Neighbour-sensing model

Last updated
Development of the cone like structure (view above, slice below) Neighbour Sensing model cone.jpg
Development of the cone like structure (view above, slice below)

The neighbour-sensing mathematical model of hyphal growth is a set of interactive computer models that simulate the way fungi hyphae grow in three-dimensional space. The three-dimensional simulation is an experimental tool which can be used to study the morphogenesis of fungal hyphal networks.

Contents

The modelling process starts with the proposition that each hypha in the fungal mycelium generates a certain abstract field that, like known physical fields, decreases with increasing distance. Both scalar and vector fields are included in the models. The field(s) and its (their) gradient(s) are used to inform the algorithm that calculates the likelihood of branching, the angle of branching and the growth direction of each hyphal tip in the simulated mycelium. The growth vector is being informed of its surroundings. The virtual hyphal tip is 'sensing' the neighbouring mycelium; thus, it is called the neighbour-sensing model.

Cross-walls in living hyphae are formed only at right angles to the long axis of the hypha. A daughter hyphal apex can only arise if a branch is initiated. So, for fungi, hyphal branch formation is the equivalent of cell division in animals, plants and protists. The position of origin of a branch and its direction and rate of growth are the main formative events in the development of fungal tissues and organs. Consequently, by simulating the mathematics of the control of hyphal growth and branching, the neighbour-sensing model provides the user with a way of experimenting with features that may regulate hyphal growth patterns during morphogenesis to arrive at suggestions that could be tested with live fungi.

The model was proposed by Audrius Meškauskas and David Moore in 2004, and developed using the supercomputing facilities of the University of Manchester. The key idea of this model is that all parts of the fungal mycelium have identical field generation systems, field sensing mechanisms and growth direction-altering algorithms. Under properly chosen model parameters, it is possible to observe the transformation of the initial unordered mycelium structure into various forms, some of which are natural-like fungal fruit bodies and other complex structures.

In one of the simplest examples, it is assumed that the hyphal tips try to keep a 45-degree orientation with relation to the Earth’s gravity vector field, and also generate some kind of scalar field that the growing tips try to avoid. This combination of parameters leads to the development of hollow conical structures, similar to the fruit bodies of some primitive fungi.

After changing the parameter set, the initially chaotic formation (in the center) starts forming cords. Neighbour Sensing model cords.jpg
After changing the parameter set, the initially chaotic formation (in the center) starts forming cords.

In another example, the hypha generates a vector field parallel to the hyphal axis, and the tips tend to turn parallel to that field. After more tips turn in the same direction, their hyphae form a stronger directional field. In this way, it is possible to observe the spontaneous orientation of growing hypha in a single direction, which simulates the strands, cords and rhizomorphs produced by many species of fungi in nature. The parameters under which the model operates can be changed during its execution. This allows a greater variety of structures to be formed (including mushroom-like shapes) and may be supposed to simulate cases where the growth strategy depends on an internal biological clock. The neighbour-sensing model explains how various fungal structures may arise because of the ‘crowd behaviour’ (convergence) of the community of hyphal tips that make up the mycelium.

Literature

Further details are available from these websites: (primary) and (mirror). The programs, with extensive documentation, are distributed as freeware by both these sites.

Notes

    Related Research Articles

    <span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

    Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of the Ascomycota are asexual, meaning that they do not have a sexual cycle and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

    <span class="mw-page-title-main">Mold</span> Wooly, dust-like fungal structure or substance

    A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.

    <span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

    Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria. The network of mycelium acts similar to human brains, in the way that mycelium is used to send electrical signals to the fruiting bodies of mushrooms. These electrical signals can be used to convey information or warn about incoming danger.

    <span class="mw-page-title-main">Hypha</span> Long, filamentous structure in fungi and Actinobacteria

    A hypha is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium.

    <span class="mw-page-title-main">Haustorium</span> Biological root-like structure that extracts nutrients from another organism

    In botany and mycology, a haustorium is a rootlike structure that grows into or around another structure to absorb water or nutrients. For example, in mistletoe or members of the broomrape family, the structure penetrates the host's tissue and draws nutrients from it. In mycology, it refers to the appendage or portion of a parasitic fungus, which performs a similar function. Microscopic haustoria penetrate the host plant's cell wall and siphon nutrients from the space between the cell wall and plasma membrane but do not penetrate the membrane itself. Larger haustoria do this at the tissue level.

    <span class="mw-page-title-main">Gravitropism</span> Plant growth in reaction to gravity

    Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

    <span class="mw-page-title-main">Sclerotium</span> Mycelial mass

    A sclerotium, is a compact mass of hardened fungal mycelium containing food reserves. One role of sclerotia is to survive environmental extremes. In some higher fungi such as ergot, sclerotia become detached and remain dormant until favorable growth conditions return. Sclerotia initially were mistaken for individual organisms and described as separate species until Louis René Tulasne proved in 1853 that sclerotia are only a stage in the life cycle of some fungi. Further investigation showed that this stage appears in many fungi belonging to many diverse groups. Sclerotia are important in the understanding of the life cycle and reproduction of fungi, as a food source, as medicine, and in agricultural blight management.

    <span class="mw-page-title-main">Clamp connection</span>

    A clamp connection is a hook-like structure formed by growing hyphal cells of certain fungi. It is a characteristic feature of basidiomycete fungi. It is created to ensure that each cell, or segment of hypha separated by septa, receives a set of differing nuclei, which are obtained through mating of hyphae of differing sexual types. It is used to maintain genetic variation within the hypha much like the mechanisms found in croziers (hooks) during the sexual reproduction of ascomycetes.

    This is a glossary of some of the terms used in phytopathology.

    <span class="mw-page-title-main">Mycelial cord</span>

    Mycelial cords are linear aggregations of parallel-oriented hyphae. The mature cords are composed of wide, empty vessel hyphae surrounded by narrower sheathing hyphae. Cords may look similar to plant roots, and also frequently have similar functions; hence they are also called rhizomorphs. As well as growing underground or on the surface of trees and other plants, some fungi make mycelial cords which hang in the air from vegetation.

    <span class="mw-page-title-main">Spitzenkörper</span> Organizing center for fungal hyphae

    The Spitzenkörper is a structure found in fungal hyphae that is the organizing center for hyphal growth and morphogenesis. It consists of many small vesicles and is present in growing hyphal tips, during spore germination, and where branch formation occurs. Its position in the hyphal tip correlates with the direction of hyphal growth. The Spitzenkörper is a part of the endomembrane system in fungi.

    <span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

    A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

    Limnoperdon is a fungal genus in the monotypic family Limnoperdaceae. The genus is also monotypic, as it contains a single species, the aquatic fungus Limnoperdon incarnatum. The species, described as new to science in 1976, produces fruit bodies that lack specialized structures such as a stem, cap and gills common in mushrooms. Rather, the fruit bodies—described as aquatic or floating puffballs—are small balls of loosely interwoven hyphae. The balls float on the surface of the water above submerged twigs. Experimental observations on the development of the fruit body, based on the growth on the fungus in pure culture, suggest that a thin strand of mycelium tethers the ball above water while it matures. Fruit bodies start out as a tuft of hyphae, then become cup-shaped, and eventually enclose around a single chamber that contains reddish spores. Initially discovered in a marsh in the state of Washington, the fungus has since been collected in Japan, South Africa, and Canada.

    <i>Auriscalpium vulgare</i> Inedible European fungi

    Auriscalpium vulgare, commonly known as the pinecone mushroom, the cone tooth, or the ear-pick fungus, is a species of fungus in the family Auriscalpiaceae of the order Russulales. It was first described in 1753 by Carl Linnaeus, who included it as a member of the tooth fungi genus Hydnum, but British mycologist Samuel Frederick Gray recognized its uniqueness and in 1821 transferred it to the genus Auriscalpium that he created to contain it. The fungus is widely distributed in Europe, Central America, North America, and temperate Asia. Although common, its small size and nondescript colors lead it to be easily overlooked in the pine woods where it grows. A. vulgare is not generally considered edible because of its tough texture, but some historical literature says it used to be consumed in France and Italy.

    <span class="mw-page-title-main">Nidulariaceae</span> Family of fungi

    The Nidulariaceae are a family of fungi in the order Agaricales. Commonly known as the bird's nest fungi, their fruiting bodies resemble tiny egg-filled birds' nests. As they are saprobic, feeding on decomposing organic matter, they are often seen growing on decaying wood and in soils enriched with wood chips or bark mulch; they have a widespread distribution in most ecological regions. The five genera within the family, namely, Crucibulum, Cyathus, Mycocalia, Nidula, and Nidularia, are distinguished from each other by differences in morphology and peridiole structure; more recently, phylogenetic analysis and comparison of DNA sequences is guiding new decisions in the taxonomic organization of this family.

    Mycetophagites is an extinct fungal genus of mycoparasitic in the order Hypocreales. A monotypic genus, it contains the single species Mycetophagites atrebora.

    <span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

    Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

    <span class="mw-page-title-main">Glossary of mycology</span> List of definitions of terms and concepts commonly used in the study of fungi

    This glossary of mycology is a list of definitions of terms and concepts relevant to mycology, the study of fungi. Terms in common with other fields, if repeated here, generally focus on their mycology-specific meaning. Related terms can be found in glossary of biology and glossary of botany, among others. List of Latin and Greek words commonly used in systematic names and Botanical Latin may also be relevant, although some prefixes and suffixes very common in mycology are repeated here for clarity.

    <span class="mw-page-title-main">Fungi in art</span> Direct and indirect influence of fungi in the arts

    Fungi are a common theme or working material in art. They appear in many different artworks around the world, starting as early as around 8000 BCE. Fungi appear in nearly all art forms, including literature, paintings, and graphic arts; and more recently, contemporary art, music, photography, comic books, sculptures, video games, dance, cuisine, architecture, fashion, and design. There are a few exhibitions dedicated to fungi, and even an entire museum.

    Anthony "Tony" Peter John Trinci was a British mycologist, botanist, and microbiologist. He was a leading expert on fungi.