Neural Designer

Last updated
Neural Designer
Developer(s) Artelnics
Written in C++
Operating system Microsoft Windows, OS X, Linux
Type Data mining, machine learning, predictive analytics
License Proprietary software
Website www.neuraldesigner.com

Neural Designer is a software tool for machine learning based on neural networks, a main area of artificial intelligence research, and contains a graphical user interface which simplifies data entry and interpretation of results.

Contents

In 2015, Neural Designer was chosen by the European Commission, within the Horizon 2020 program, as a disruptive technology in the ICT field. [1]

Features

Neural Designer performs descriptive, diagnostic, predictive and prescriptive data analytics. It implements deep architectures with multiple non-linear layers and contains utilities to solve function regression, pattern recognition, time series and autoencoding problems.[ citation needed ]

The input to Neural Designer is a data set, and its output is a predictive model. That result takes the form of an explicit mathematical expression, which can be exported to any computer language or system.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Artificial neural network</span> Computational model used in machine learning, based on connected, hierarchical functions

Artificial neural networks are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains.

<span class="mw-page-title-main">Data mining</span> Process of extracting and discovering patterns in large data sets

Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.

<span class="mw-page-title-main">Machine learning</span> Study of algorithms that improve automatically through experience

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can effectively generalize and thus perform tasks without explicit instructions. Recently, generative artificial neural networks have been able to surpass many previous approaches in performance. Machine learning approaches have been applied to large language models, computer vision, speech recognition, email filtering, agriculture and medicine, where it is too costly to develop algorithms to perform the needed tasks.

<span class="mw-page-title-main">Neural network</span> Structure in biology and artificial intelligence

A neural network is a neural circuit of biological neurons, sometimes also called a biological neural network, or a network of artificial neurons or nodes in the case of an artificial neural network.

Data Stream Mining is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities.

In predictive analytics, data science, machine learning and related fields, concept drift or drift is an evolution of data that invalidates the data model. It happens when the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes. Drift detection and drift adaptation are of paramount importance in the fields that involve dynamically changing data and data models.

Neural network software is used to simulate, research, develop, and apply artificial neural networks, software concepts adapted from biological neural networks, and in some cases, a wider array of adaptive systems such as artificial intelligence and machine learning.

<span class="mw-page-title-main">Weka (software)</span> Suite of machine learning software written in Java

Waikato Environment for Knowledge Analysis (Weka) is a collection of machine learning and data analysis free software licensed under the GNU General Public License. It was developed at the University of Waikato, New Zealand and is the companion software to the book "Data Mining: Practical Machine Learning Tools and Techniques".

<span class="mw-page-title-main">SPSS Modeler</span> Data analytics software

IBM SPSS Modeler is a data mining and text analytics software application from IBM. It is used to build predictive models and conduct other analytic tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without programming.

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is the subset of machine learning methods which are based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

OpenNN is a software library written in the C++ programming language which implements neural networks, a main area of deep learning research. The library is open-source, licensed under the GNU Lesser General Public License.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Artificial intelligence in healthcare</span> Overview of the use of artificial intelligence in healthcare

Artificial intelligence in healthcare is a term used to describe the use of machine-learning algorithms and software, or artificial intelligence (AI), to copy human cognition in the analysis, presentation, and understanding of complex medical and health care data, or to exceed human capabilities by providing new ways to diagnose, treat, or prevent disease. Specifically, AI is the ability of computer algorithms to approximate conclusions based solely on input data.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning:

<span class="mw-page-title-main">Automated machine learning</span> Process of automating the application of machine learning

Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems.

Deep Learning Studio is a software tool that aims to simplify the creation of deep learning models used in artificial intelligence. It is compatible with a number of open-source programming frameworks popularly used in artificial neural networks, including MXNet and Google's TensorFlow.

<span class="mw-page-title-main">Merative</span> U.S. healthcare company

Merative L.P., formerly IBM Watson Health, is an American medical technology company that provides products and services that help clients facilitate medical research, clinical research, real world evidence, and healthcare services, through the use of artificial intelligence, data analytics, cloud computing, and other advanced information technology. Merative is owned by Francisco Partners, an American private equity firm headquartered in San Francisco, California. In 2022, IBM divested and spun-off their Watson Health division into Merative. As of 2023, it remains a standalone company headquartered in Ann Arbor with innovation centers in Hyderabad, Bengaluru, and Chennai.

<i>Data Science and Predictive Analytics</i>

The first edition of the textbook Data Science and Predictive Analytics: Biomedical and Health Applications using R, authored by Ivo D. Dinov, was published in August 2018 by Springer. The second edition of the book was printed in 2023.

References

  1. "European Commission : CORDIS : Projects and Results : A high performance solution for predictive analytics". European Commission. May 2015.