Neural clique

Last updated

Neural cliques are network-level memory coding units in the hippocampus. They are functionally organized in a categorical and hierarchical manner. Researchers investigating the role of neural cliques have gained insight into the process of storing memories in the brain. Research evidence suggests that memory of events is achieved not through memorization of exact event details but through recreation of select images based on cognitive significance. This process enables the brain to exhibit large storage capacity and facilitates the capacity for abstract reasoning and generalization. Although several studies converges in the demonstration that real-time patterns of memory traces and sensory inputs are retained in the form of neural cliques, the topic is currently in active research in order to fully understand this biological code.

Contents

History

Hebb proposed in 1949 that information in the brain would need to involve the coordinated activity of multiple neuronal cells, termed engrams or neuronal cells assemblies, in order to achieve reliable information encoding and restitution,[ dubious ] and putting forward Hebb's Rule as a fundamental mechanism for the coordination of activity. [1] Indeed, biological constructs[ vague ] are known to be unreliable, showing only a stochastic probability of transmitting information, and with a converse probability of spontaneous, spurious firing. Evidence supporting such a concept of cell assemblies was later observed, both at the macroscopic level with the cortical columns in the somato-sensory areas, and at the microscopic level with the NMDA coding of coordinated activity in synapses. However, the mesoscopic level has remained elusive. Some authors, including Vernon Mountcastle, argued that the mesoscopic level of sensory brain areas might be topologically organized similarly to the macroscopic and microscopic level, in cortical minicolumns, specifically what has been termed the columnar functional organization. However, any exact mechanism of information encoding and decoding in these sensory cortical columns has remained elusive.

Biological observations

Recently, researchers have been able to map out distinct patterns of neural activity in the hippocampus triggered by different events. [2] These neural patterns were geometricalled shaped as cliques, which is a fully connected network of nodes. The activity patterns associated with certain startling experiences recurred spontaneously—at intervals ranging from seconds to minutes after the actual event—that showed similar trajectories, including the characteristic geometric shape, but with smaller amplitudes than their original responses.

Theoretical models

A theoretical associative memory model with a practical implementation running in real-time on modern hardware was proposed, the Gripon-Berrou Neural Network or Cliques Neural Network, [3] [4] an extension of the Hopfield network. This model suggest that the encoding of memories or information is done in constant O(1) time, by simply creating synapses between the neurons, creating a clique in a subgraph of the network, representing the memory. The decoding is then simple and fast, based on the biological neurons behavior of the all-or-none and winner-takes-all. This model demonstrates the usefulness of cliques, by allowing the reconstruction of a full memory from a partial or corrupted input, even with unreliable synapses and neurons, and providing an explanation for associative train of thoughts when pre-cueing subjects with a familiar sensory stimuli (e.g., Proust's madeleine).

See also

Related Research Articles

Nervous system Highly complex part of an animal that coordinates actions and sensory information by transmitting signals between different parts of the body

In biology, the nervous system is a highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory nerves or afferent. Spinal nerves are mixed nerves that serve both functions. The PNS is divided into three separate subsystems, the somatic, autonomic, and enteric nervous systems. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

The development of the nervous system, or neural development, or neurodevelopment, refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The field of neural development draws on both neuroscience and developmental biology to describe and provide insight into the cellular and molecular mechanisms by which complex nervous systems develop, from nematodes and fruit flies to mammals.

Computational neuroscience is a branch of neuroscience which employs mathematical models, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system.

Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity, the adaptation of brain neurons during the learning process. It was introduced by Donald Hebb in his 1949 book The Organization of Behavior. The theory is also called Hebb's rule, Hebb's postulate, and cell assembly theory. Hebb states it as follows:

Let us assume that the persistence or repetition of a reverberatory activity tends to induce lasting cellular changes that add to its stability. ... When an axon of cell A is near enough to excite a cell B and repea cells firing B, is increased.

The memory-prediction framework is a theory of brain function created by Jeff Hawkins and described in his 2004 book On Intelligence. This theory concerns the role of the mammalian neocortex and its associations with the hippocampi and the thalamus in matching sensory inputs to stored memory patterns and how this process leads to predictions of what will happen in the future.

Neural circuit Network or circuit of neurons

A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Neural circuits interconnect to one another to form large scale brain networks. Biological neural networks have inspired the design of artificial neural networks, but artificial neural networks are usually not strict copies of their biological counterparts.

Neural oscillation Brainwaves, repetitive patterns of neural activity in the central nervous system

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

A neuronal ensemble is a population of nervous system cells involved in a particular neural computation.

Neural binding

Neural binding is the neuroscientific aspect of what is commonly known as the binding problem: the interdisciplinary difficulty of creating a comprehensive and verifiable model for the unity of consciousness. "Binding" refers to the integration of highly diverse neural information in the forming of one's cohesive experience. The neural binding hypothesis states that neural signals are paired through synchronized oscillations of neuronal activity that combine and recombine to allow for a wide variety of responses to context-dependent stimuli. These dynamic neural networks are thought to account for the flexibility and nuanced response of the brain to various situations. The coupling of these networks is transient, on the order of milliseconds, and allows for rapid activity.

Neural coding is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is thought that neurons can encode both digital and analog information.

A cultured neuronal network is a cell culture of neurons that is used as a model to study the central nervous system, especially the brain. Often, cultured neuronal networks are connected to an input/output device such as a multi-electrode array (MEA), thus allowing two-way communication between the researcher and the network. This model has proved to be an invaluable tool to scientists studying the underlying principles behind neuronal learning, memory, plasticity, connectivity, and information processing.

Hierarchical temporal memory (HTM) is a biologically constrained machine intelligence technology developed by Numenta. Originally described in the 2004 book On Intelligence by Jeff Hawkins with Sandra Blakeslee, HTM is primarily used today for anomaly detection in streaming data. The technology is based on neuroscience and the physiology and interaction of pyramidal neurons in the neocortex of the mammalian brain.

Recurrent thalamo-cortical resonance is an observed phenomenon of oscillatory neural activity between the thalamus and various cortical regions of the brain. It is proposed by Rodolfo Llinas and others as a theory for the integration of sensory information into the whole of perception in the brain. Thalamocortical oscillation is proposed to be a mechanism of synchronization between different cortical regions of the brain, a process known as temporal binding. This is possible through the existence of thalamocortical networks, groupings of thalamic and cortical cells that exhibit oscillatory properties.

Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience; hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules during increased neuronal activity.

A hippocampus prosthesis is a type of cognitive prosthesis. Prosthetic devices replace normal function of a damaged body part; this can be simply a structural replacement or a rudimentary, functional replacement. However, prosthetics involving the brain have some special categories and requirements. "Input" prosthetics, such as retinal or cochlear implant, supply signals to the brain that the patient eventually learns to interpret as sight or sound. "Output" prosthetics use brain signals to drive a bionic arm, hand or computer device, and require considerable training during which the patient learns to generate the desired action via their thoughts. Both of these types of prosthetics rely on the plasticity of the brain to adapt to the requirement of the prosthesis, thus allowing the user to "learn" the use of his new body part. A cognitive or "brain-to-brain" prosthesis involves neither learned input nor output signals, but the native signals used normally by the area of the brain to be replaced. Thus, such a device must be able to fully replace the function of a small section of the nervous system—using that section's normal mode of operation. In order to achieve this, developers require a deep understanding of the functioning of the nervous system. The scope of design must include a reliable mathematical model as well as the technology in order to properly manufacture and install a cognitive prosthesis. The primary goal of an artificial hippocampus is to provide a cure for Alzheimer's disease and other hippocampus—related problems. To do so, the prosthesis has to be able to receive information directly from the brain, analyze the information and give an appropriate output to the cerebral cortex; in other words, it must behave just like a natural hippocampus. At the same time, the artificial organ must be completely autonomous, since any exterior power source will greatly increase the risk of infection.

Neural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain.

Network of human nervous system comprises nodes that are connected by links. The connectivity may be viewed anatomically, functionally, or electrophysiologically. These are presented in several Wikipedia articles that include Connectionism, Biological neural network, Artificial neural network, Computational neuroscience, as well as in several books by Ascoli, G. A. (2002), Sterratt, D., Graham, B., Gillies, A., & Willshaw, D. (2011), Gerstner, W., & Kistler, W. (2002), and Rumelhart, J. L., McClelland, J. L., and PDP Research Group (1986) among others. The focus of this article is a comprehensive view of modeling a neural network. Once an approach based on the perspective and connectivity is chosen, the models are developed at microscopic, mesoscopic, or macroscopic (system) levels. Computational modeling refers to models that are developed using computing tools.

The Karl Spencer Lashley Award is awarded by The American Philosophical Society as a recognition of research on the integrative neuroscience of behavior. The award was established in 1957 by a gift from Dr. Karl Spencer Lashley.

Joe Z. Tsien is a neuroscientist who pioneered Cre/lox-neurogenetics in the mid-1990s, a versatile toolbox for neuroscientists to study the complex relationships between genes, neural circuits, and behaviors. He is also known as the creator of the smart mouse Doogie in the late 1990s while being a faculty member at Princeton University. Recently, he developed the Theory of Connectivity in an effort to explain the origin of intelligence, or the basic design principle underlying brain computation and intelligence. The theory states that brain computation is organized by a power-of-two-based permutation logic in constructing cell assemblies - the basic building blocks of neural circuits. The theory has received initial validation from experiments. The discovery of this basic computational logic of the brain can have important implications for the development of artificial general intelligence.

The term posterior cortical hot zone was coined by Christof Koch and colleagues to describe the part of the neocortex closely associated with the minimal neural substrate essential for conscious perception. The posterior cortical hot zone includes sensory cortical areas in the parietal, temporal, and occipital lobes. It is the “sensory” cortex, much as the frontal cortex is the “action” cortex.

References

  1. Hebb, D. (1949). The organisation of behavior; Wiley; New York.
  2. Lin, Longnian; Osan, Remus; Tsien, Joe Z. (2006). "Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes". Trends in Neurosciences. 29 (1): 48–57. doi:10.1016/j.tins.2005.11.004. ISSN   0166-2236. PMID   16325278. S2CID   53177323.
  3. Gripon, Vincent; Berrou, Claude (2011). "Sparse neural networks with large learning diversity". IEEE Transactions on Neural Networks. 22 (7): 1087–1096. arXiv: 1102.4240 . doi:10.1109/tnn.2011.2146789. PMID   21652285. S2CID   15842921.
  4. Larroque, S., Gooya, E. S., Gripon, V., & Pastor, D. (2015). Using Tags to Improve Diversity of Sparse Associative Memories. Proceedings of Cognitive, 1-7.