Neyer d-optimal test

Last updated

The Neyer d-optimal test is a sensitivity test. It can be used to answer questions such as "How far can a carton of eggs fall, on average, before one breaks?" If these egg cartons are very expensive, the person running the test would like to minimize the number of cartons dropped, to keep the experiment cheaper and to perform it faster. The Neyer test allows the experimenter to choose the experiment that gives the most information. In this case, given the history of egg cartons which have already been dropped, and whether those cartons broke or not, the Neyer test says "you will learn the most if you drop the next egg carton from a height of 32.123 meters."

Contents

Applications

The Neyer test is useful in any situation when you wish to determine the average amount of a given stimulus needed in order to trigger a response. Examples:

History

The Neyer-d optimal test was described by Barry T. Neyer in 1994. This method has replaced the earlier Bruceton analysis or "Up and Down Test" that was devised by Dixon and Mood in 1948 to allow computation with pencil and paper. Samples are tested at various stimulus levels, and the results (response or no response) noted. The Neyer Test guides the experimenter to pick test levels that provide the maximum amount of information. Unlike previous methods that have been developed, this method requires the use of a computer program to calculate the test levels.

Although not directly related to the test method, the likelihood ratio analysis method is often used to analyze the results of tests conducted with the Neyer D-Optimal test. The combined test and analysis methods are commonly known as the Neyer Test.

Dror and Steinberg (2008) suggest another experimental design method which is more efficient than Neyer's, by enabling the usage of a D-optimal design criterion from the outset of the experiment. Furthermore, their method is extended to deal with situations which are not handled by previous algorithms, including extension from fully sequential designs (updating the plan after each observation) to group-sequential designs (any partition of the experiment to blocks of numerous observations), from a binary response ("success" or "failure") to any generalized linear model, and from the univariate case to the treatment of multiple predictors (such as designing an experiment to test a response in a medical treatment where the experimenters changes doses of two different drugs).

See also

Related Research Articles

Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze the differences among means. ANOVA was developed by the statistician Ronald Fisher. ANOVA is based on the law of total variance, where the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether two or more population means are equal, and therefore generalizes the t-test beyond two means. In other words, the ANOVA is used to test the difference between two or more means.

<span class="mw-page-title-main">Design of experiments</span> Design of tasks set to uncover from

The design of experiments, also known as experiment design or experimental design, is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associated with experiments in which the design introduces conditions that directly affect the variation, but may also refer to the design of quasi-experiments, in which natural conditions that influence the variation are selected for observation.

Statistics is a field of inquiry that studies the collection, analysis, interpretation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the physical and social sciences to the humanities; it is also used and misused for making informed decisions in all areas of business and government.

<span class="mw-page-title-main">Absolute threshold of hearing</span> Minimum sound level that an average human can hear

The absolute threshold of hearing (ATH) is the minimum sound level of a pure tone that an average human ear with normal hearing can hear with no other sound present. The absolute threshold relates to the sound that can just be heard by the organism. The absolute threshold is not a discrete point, and is therefore classed as the point at which a sound elicits a response a specified percentage of the time. This is also known as the auditory threshold.

<span class="mw-page-title-main">Psychophysics</span> Branch of knowledge relating physical stimuli and psychological perception

Psychophysics quantitatively investigates the relationship between physical stimuli and the sensations and perceptions they produce. Psychophysics has been described as "the scientific study of the relation between stimulus and sensation" or, more completely, as "the analysis of perceptual processes by studying the effect on a subject's experience or behaviour of systematically varying the properties of a stimulus along one or more physical dimensions".

Taguchi methods are statistical methods, sometimes called robust design methods, developed by Genichi Taguchi to improve the quality of manufactured goods, and more recently also applied to engineering, biotechnology, marketing and advertising. Professional statisticians have welcomed the goals and improvements brought about by Taguchi methods, particularly by Taguchi's development of designs for studying variation, but have criticized the inefficiency of some of Taguchi's proposals.

The safety testing of explosives involves the determination of various properties of the different energetic materials that are used in commercial, mining, and military applications. It is highly desirable to measure the conditions under which explosives can be set off for several reasons, including: safety in handling, safety in storage, and safety in use.

A Bruceton analysis is one way of analyzing the sensitivity of explosives as described originally by Dixon and Mood in 1948. Also known as the "Up and Down Test" or "the staircase method", a Bruceton analysis relies upon two parameters: first stimulus and step size. A stimulus is provided to the sample, and the results noted. If a positive result is noted, then the stimulus is decremented by the step size. If a negative result occurs, the stimulus is increased. The test continues with each sample tested at a stimulus 1 step up or down from the previous stimulus if the previous result was negative or positive.

<span class="mw-page-title-main">Optimal design</span> Experimental design that is optimal with respect to some statistical criterion

In the design of experiments, optimal designs are a class of experimental designs that are optimal with respect to some statistical criterion. The creation of this field of statistics has been credited to Danish statistician Kirstine Smith.

<span class="mw-page-title-main">Psychometric function</span> Inferential psychometric model

A psychometric function is an inferential psychometric model applied in detection and discrimination tasks. It models the relationship between a given feature of a physical stimulus, e.g. velocity, duration, brightness, weight etc., and forced-choice responses of a human or animal test subject. The psychometric function therefore is a specific application of the generalized linear model (GLM) to psychophysical data. The probability of response is related to a linear combination of predictors by means of a sigmoid link function.

<span class="mw-page-title-main">Dose–response relationship</span> Measure of organism response to stimulus

The dose–response relationship, or exposure–response relationship, describes the magnitude of the response of an organism, as a function of exposure to a stimulus or stressor after a certain exposure time. Dose–response relationships can be described by dose–response curves. This is explained further in the following sections. A stimulus response function or stimulus response curve is defined more broadly as the response from any type of stimulus, not limited to chemicals.

In medicine, a crossover study or crossover trial is a longitudinal study in which subjects receive a sequence of different treatments. While crossover studies can be observational studies, many important crossover studies are controlled experiments, which are discussed in this article. Crossover designs are common for experiments in many scientific disciplines, for example psychology, pharmaceutical science, and medicine.

Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. For instance, repeated measurements are collected in a longitudinal study in which change over time is assessed.

Two-alternative forced choice (2AFC) is a method for measuring the sensitivity of a person or animal to some particular sensory input, stimulus, through that observer's pattern of choices and response times to two versions of the sensory input. For example, to determine a person's sensitivity to dim light, the observer would be presented with a series of trials in which a dim light was randomly either in the top or bottom of the display. After each trial, the observer responds "top" or "bottom". The observer is not allowed to say "I do not know", or "I am not sure", or "I did not see anything". In that sense the observer's choice is forced between the two alternatives.

Red Cedar Technology is a software development and engineering services company. Red Cedar Technology was founded by Michigan State University professors Ron Averill and Erik Goodman in 1999. The headquarters is located in East Lansing, Michigan, near MSU's campus. Red Cedar Technology develops and distributes the HEEDS Professional suite of design optimization software. HEEDS is based on spin-out technology from Michigan State University. On June 30, 2013 Red Cedar Technology was acquired by CD-adapco. CD-adapco was acquired in 2016 by Siemens Digital Industries Software.

Receiver Operating Characteristic Curve Explorer and Tester (ROCCET) is an open-access web server for performing biomarker analysis using ROC curve analyses on metabolomic data sets. ROCCET is designed specifically for performing and assessing a standard binary classification test. ROCCET accepts metabolite data tables, with or without clinical/observational variables, as input and performs extensive biomarker analysis and biomarker identification using these input data. It operates through a menu-based navigation system that allows users to identify or assess those clinical variables and/or metabolites that contain the maximal diagnostic or class-predictive information. ROCCET supports both manual and semi-automated feature selection and is able to automatically generate a variety of mathematical models that maximize the sensitivity and specificity of the biomarker(s) while minimizing the number of biomarkers used in the biomarker model. ROCCET also supports the rigorous assessment of the quality and robustness of newly discovered biomarkers using permutation testing, hold-out testing and cross-validation.

Design–Expert is a statistical software package from Stat-Ease Inc. that is specifically dedicated to performing design of experiments (DOE). Design–Expert offers comparative tests, screening, characterization, optimization, robust parameter design, mixture designs and combined designs. Design–Expert provides test matrices for screening up to 50 factors. Statistical significance of these factors is established with analysis of variance (ANOVA). Graphical tools help identify the impact of each factor on the desired outcomes and reveal abnormalities in the data.

<span class="mw-page-title-main">Up-and-Down Designs</span>

Up-and-down designs (UDDs) are a family of statistical experiment designs used in dose-finding experiments in science, engineering, and medical research. Dose-finding experiments have binary responses: each individual outcome can be described as one of two possible values, such as success vs. failure or toxic vs. non-toxic. Mathematically the binary responses are coded as 1 and 0. The goal of dose-finding experiments is to estimate the strength of treatment (i.e., the "dose") that would trigger the "1" response a pre-specified proportion of the time. This dose can be envisioned as a percentile of the distribution of response thresholds. An example where dose-finding is used is in an experiment to estimate the LD50 of some toxic chemical with respect to mice.

<span class="mw-page-title-main">Adaptive design (medicine)</span> Concept in medicine referring to design of clinical trials

In an adaptive design of a clinical trial, the parameters and conduct of the trial for a candidate drug or vaccine may be changed based on an interim analysis. Adaptive design typically involves advanced statistics to interpret a clinical trial endpoint. This is in contrast to traditional single-arm clinical trials or randomized clinical trials (RCTs) that are static in their protocol and do not modify any parameters until the trial is completed. The adaptation process takes place at certain points in the trial, prescribed in the trial protocol. Importantly, this trial protocol is set before the trial begins with the adaptation schedule and processes specified. Adaptions may include modifications to: dosage, sample size, drug undergoing trial, patient selection criteria and/or "cocktail" mix. The PANDA provides not only a summary of different adaptive designs, but also comprehensive information on adaptive design planning, conduct, analysis and reporting.

References