Nitrogen balance

Last updated

In human physiology, nitrogen balance is the net difference between bodily nitrogen intake (ingestion) and loss (excretion). It can be represented as the following:

Contents

Nitrogen is a fundamental chemical component of amino acids, the molecular building blocks of protein. As such, nitrogen balance may be used as an index of protein metabolism. [1] When more nitrogen is gained than lost by an individual, they are considered in a positive nitrogen balance, and in a state of overall protein anabolism. In contrast, a negative nitrogen balance, in which more nitrogen is lost than gained, indicates a state of overall protein catabolism. [2]

The body obtains nitrogen from dietary protein, sources of which include meat, fish, eggs, dairy products, nuts, legumes, cereals, and grains. Nitrogen loss occurs largely through urine in the form of urea, as well as through faeces, sweat, and growth of hair and skin.

Blood urea nitrogen and urine urea nitrogen tests can be used to estimate nitrogen balance.

Physiological and Clinical Implications

Positive nitrogen balance is associated with periods of growth, hypothyroidism, tissue repair, and pregnancy. Because of this, the intake of nitrogen into the body is greater than the loss of nitrogen from the body. Thus, there is an increase in the total body pool of protein.

Negative nitrogen balance is associated with burns, serious tissue injuries, fever, hyperthyroidism, wasting diseases, and periods of fasting. This means that the amount of nitrogen excreted from the body is greater than the amount of nitrogen ingested. [3] A negative nitrogen balance can be used as part of a clinical evaluation of malnutrition. [4]

Nitrogen balance is a method traditionally used to measure dietary protein requirements. [5] This approach necessitates the meticulous collection of all nitrogen inputs and outputs to ensure comprehensive accounting of nitrogen exchanges. [6] Nitrogen balance studies typically involve controlled dietary conditions, requiring participants to consume specific diets to determine total nitrogen intake precisely. Furthermore, participants often must remain at the study location for the duration of the study to facilitate the collection of all nitrogen losses. Physical exercise is also known to influence nitrogen excretion, adding another variable that requires control during these studies. [7] Due to the stringent conditions required for accurate results, the nitrogen balance method may pose challenges when studying dietary protein requirements across different demographics, such as children. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Riboflavin</span> Vitamin, dietary supplement, and yellow food dye

Riboflavin, also known as vitamin B2, is a vitamin found in food and sold as a dietary supplement. It is essential to the formation of two major coenzymes, flavin mononucleotide and flavin adenine dinucleotide. These coenzymes are involved in energy metabolism, cellular respiration, and antibody production, as well as normal growth and development. The coenzymes are also required for the metabolism of niacin, vitamin B6, and folate. Riboflavin is prescribed to treat corneal thinning, and taken orally, may reduce the incidence of migraine headaches in adults.

<span class="mw-page-title-main">Isoleucine</span> Chemical compound

Isoleucine (symbol Ile or I) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH+3 form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a hydrocarbon side chain with a branch (a central carbon atom bound to three other carbon atoms). It is classified as a non-polar, uncharged (at physiological pH), branched-chain, aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it. Essential amino acids are necessary in the human diet. In plants isoleucine can be synthesized from threonine and methionine. In plants and bacteria, isoleucine is synthesized from pyruvate employing leucine biosynthesis enzymes. It is encoded by the codons AUU, AUC, and AUA.

<span class="mw-page-title-main">Leucine</span> Chemical compound

Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.

A nutrient is a substance used by an organism to survive, grow and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi and protists. Nutrients can be incorporated into cells for metabolic purposes or excreted by cells to create non-cellular structures such as hair, scales, feathers, or exoskeletons. Some nutrients can be metabolically converted into smaller molecules in the process of releasing energy such as for carbohydrates, lipids, proteins and fermentation products leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi live on dead or living organic matter and meet nutrient needs from their host.

An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. Of the 21 amino acids common to all life forms, the nine amino acids humans cannot synthesize are valine, isoleucine, leucine, methionine, phenylalanine, tryptophan, threonine, histidine, and lysine.

The net protein utilization, or NPU, is the percentage of ingested nitrogen that is retained in the body. It is used to determine the nutritional efficiency of protein in the diet, that is, it is used as a measure of "protein quality" for human nutritional purposes.

A low-protein diet is a diet in which people decrease their intake of protein. A low-protein diet is used as a therapy for inherited metabolic disorders, such as phenylketonuria and homocystinuria, and can also be used to treat kidney or liver disease. Low protein consumption appears to reduce the risk of bone breakage, presumably through changes in calcium homeostasis. Consequently, there is no uniform definition of what constitutes low-protein, because the amount and composition of protein for an individual with phenylketonuria would differ substantially from one with homocystinuria or tyrosinemia.

Specific dynamic action (SDA), also known as thermic effect of food (TEF) or dietary induced thermogenesis (DIT), is the amount of energy expenditure above the basal metabolic rate due to the cost of processing food for use and storage. Heat production by brown adipose tissue which is activated after consumption of a meal is an additional component of dietary induced thermogenesis. The thermic effect of food is one of the components of metabolism along with resting metabolic rate and the exercise component. A commonly used estimate of the thermic effect of food is about 10% of one's caloric intake, though the effect varies substantially for different food components. For example, dietary fat is very easy to process and has very little thermic effect, while protein is hard to process and has a much larger thermic effect.

Protein toxicity is the effect of the buildup of protein metabolic waste compounds, like urea, uric acid, ammonia, and creatinine. Protein toxicity has many causes, including urea cycle disorders, genetic mutations, excessive protein intake, and insufficient kidney function, such as chronic kidney disease and acute kidney injury. Symptoms of protein toxicity include unexplained vomiting and loss of appetite. Untreated protein toxicity can lead to serious complications such as seizures, encephalopathy, further kidney damage, and even death.

Bodybuilding supplements are dietary supplements commonly used by those involved in bodybuilding, weightlifting, mixed martial arts, and athletics for the purpose of facilitating an increase in lean body mass. Bodybuilding supplements may contain ingredients that are advertised to increase a person's muscle, body weight, athletic performance, and decrease a person's percent body fat for desired muscle definition. Among the most widely used are high protein drinks, pre-workout blends, branched-chain amino acids (BCAA), glutamine, arginine, essential fatty acids, creatine, HMB, whey protein, ZMA, and weight loss products. Supplements are sold either as single ingredient preparations or in the form of "stacks" – proprietary blends of various supplements marketed as offering synergistic advantages.

<span class="mw-page-title-main">Protein supplement</span>

A protein supplement is a dietary supplement or a bodybuilding supplement, and usually comes in the form of a protein bar, protein powder, and even readily available as a protein shake. Usually made from whey, plant, and/or meat sources.

Biological value (BV) is a measure of the proportion of absorbed protein from a food which becomes incorporated into the proteins of the organism's body. It captures how readily the digested protein can be used in protein synthesis in the cells of the organism. Proteins are the major source of nitrogen in food. BV assumes protein is the only source of nitrogen and measures the amount of nitrogen ingested in relation to the amount which is subsequently excreted. The remainder must have been incorporated into the proteins of the organisms body. A ratio of nitrogen incorporated into the body over nitrogen absorbed gives a measure of protein "usability" – the BV.

<span class="mw-page-title-main">Protein (nutrient)</span> Nutrient for the human body

Proteins are essential nutrients for the human body. They are one of the building blocks of body tissue and can also serve as a fuel source. As a fuel, proteins provide as much energy density as carbohydrates: 4 kcal per gram; in contrast, lipids provide 9 kcal per gram. The most important aspect and defining characteristic of protein from a nutritional standpoint is its amino acid composition.

Starvation response in animals is a set of adaptive biochemical and physiological changes, triggered by lack of food or extreme weight loss, in which the body seeks to conserve energy by reducing metabolic rate and/or non-resting energy expenditure to prolong survival and preserve body fat and lean mass.

<span class="mw-page-title-main">Nitrogen and Non-Protein Nitrogen's effects on Agriculture</span>

Nitrogen's effects on agriculture profoundly influence crop growth, soil fertility, and overall agricultural productivity, while also exerting significant impacts on the environment.

The human skeletal system is a complex organ in constant equilibrium with the rest of the body. In addition to supporting and giving structure to the body, a bone is the major reservoir for many minerals and compounds essential for maintaining a healthy pH balance. The deterioration of the body with age renders the elderly particularly susceptible to and affected by poor bone health. Illnesses like osteoporosis, characterized by weakening of the bone's structural matrix, increases the risk of hip-fractures and other life-changing secondary symptoms. In 2010, over 258,000 people aged 65 and older were admitted to the hospital for hip fractures. Incidence of hip fractures is expected to rise by 12% in America, with a projected 289,000 admissions in the year 2030. Other sources estimate up to 1.5 million Americans will have an osteoporotic-related fracture each year. The cost of treating these people is also enormous, in 1991 Medicare spent an estimated $2.9 billion for treatment and out-patient care of hip fractures, this number can only be expected to rise.

Urine urea nitrogen (UUN) refers to a test that measures the urine urea to assess nitrogen balance.

High performance sport dogs are those bred and trained to compete in various athletic events. Events include but are not limited to, agility trials, hunting and racing. These events are physically and metabolically demanding. As a result, canine athletes require specialized nutrition in order to perform at high levels during events and for maintenance and recovery. The main nutritional concern for sport dogs is adequate energy. A well-balanced diet, containing the appropriate amounts of protein, fat, carbohydrate, fiber and micronutrients is essential to meet these energy requirements.

<span class="mw-page-title-main">Vegetarian and vegan dog diet</span> Adequate meat-free or animal-free nutrition

As in the human practice of veganism, vegan dog foods are those formulated with the exclusion of ingredients that contain or were processed with any part of an animal, or any animal byproduct. Vegan dog food may incorporate the use of fruits, vegetables, cereals, legumes including soya, nuts, vegetable oils, as well as any other non-animal based foods.

<span class="mw-page-title-main">Constance Kies</span> American dietitian and nutrition scientist (1934–1993)

Constance Virginia Kies was an American nutrition scientist and dietitian. Kies worked as a public school teacher for three years before going against the traditional gender norms of her time and completing an M.S. and Ph.D. from the University of Wisconsin–Madison. Over the duration of her 30-year career at the University of Nebraska–Lincoln, Kies researched nutritional biochemistry. She demonstrated relationships between minerals, proteins, and dietary fiber through pioneering human subject research. Her findings led to advancements in human knowledge of copper and protein metabolism. She was honored with the Borden Award and was a fellow of the American College of Nutrition. Kies was a feminist and a member of the National Organization for Women and the Women's Equity Action League. She died of uterine cancer three months after her diagnosis.

References

  1. World Health Organization Protein and amino acid requirements in human nutrition. WHO Technical Report Series 935
  2. Dickerson, Roland (April 2016). "Nitrogen Balance and Protein Requirements for Critically Ill Older Patients". Nutrients. 8 (4): 226. doi: 10.3390/nu8040226 . PMC   4848694 . PMID   27096868.
  3. "VII. Monitoring Nutrition Therapy". Archived from the original on 2011-09-28.
  4. Barbosa-Silva MC (May 2008). "Subjective and objective nutritional assessment methods: what do they really assess?". Curr Opin Clin Nutr Metab Care. 11 (3): 248–54. doi:10.1097/MCO.0b013e3282fba5d7. PMID   18403920. S2CID   26831957.
  5. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients). The National Academies Press: 2005
  6. Rand WM, Pellett PL, Young VR (2003). Meta-analysis of nitrogen balance studies for estimating protein requirements in health adults. Am.J.Nutr 77(1):109-127.
  7. Clauss, Matthieu; Burkhardt, Meike; Wöber, Sophie; Skålhegg, Bjørn Steen; Jensen, Jørgen (21 February 2024). "Effect of five hours of mixed exercise on urinary nitrogen excretion in healthy moderate-to-well-trained young adults". Frontiers in Nutrition. 11. doi: 10.3389/fnut.2024.1345922 . PMC   10914964 . PMID   38450230.
  8. Elango R, Humayun MA, Ball RO, Pencharz PB (2011). "Protein requirements of healthy, school-aged children determined by the indicator amino acid oxidation method". Am. J. Clin. Nutr. 94 (6): 1545–1552. doi: 10.3945/ajcn.111.012815 . PMID   22049165.