In mathematics, a Nori semistable vector bundle is a particular type of vector bundle whose first definition has been first implicitly suggested by Madhav V. Nori, [1] [2] as one of the main ingredients for the construction of the fundamental group scheme. The original definition given by Nori was obviously not called Nori semistable. Also, Nori's definition was different from the one suggested nowadays. [3] The category of Nori semistable vector bundles contains the Tannakian category of essentially finite vector bundles, whose naturally associated group scheme is the fundamental group scheme .
Let be a scheme over a field and a vector bundle on . It is said that is Nori semistable if for any smooth and proper curve over and any morphism the pull back is semistable of degree 0. [4]
Nori semistable vector bundles were called by Nori semistable causing a lot of confusion with the already existing definition of semistable vector bundles. More importantly Nori simply said that the restriction of to any curve in had to be semistable of degree 0. Then for instance in positive characteristic a morphism like the Frobenius morphism was not included in Nori's original definition. The importance of including it is that the above definition makes the category of Nori semistable vector bundles tannakian and the group scheme associated to it is the -fundamental group scheme [5] . Instead, Nori's original definition didn't give rise to a Tannakian category but only to an abelian category.
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space : to every point of the space we associate a vector space in such a way that these vector spaces fit together to form another space of the same kind as , which is then called a vector bundle over .
In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space and a product space is defined using a continuous surjective map, that in small regions of behaves just like a projection from corresponding regions of to The map called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space is known as the total space of the fiber bundle, as the base space, and the fiber.
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In mathematics, a Lie groupoid is a groupoid where the set of objects and the set of morphisms are both manifolds, all the category operations are smooth, and the source and target operations
In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.
The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.
In mathematics, a stable vector bundle is a vector bundle that is stable in the sense of geometric invariant theory. Any holomorphic vector bundle may be built from stable ones using Harder–Narasimhan filtration. Stable bundles were defined by David Mumford in Mumford (1963) and later built upon by David Gieseker, Fedor Bogomolov, Thomas Bridgeland and many others.
In mathematics, the fundamental group scheme is a group scheme canonically attached to a scheme over a Dedekind scheme. It is a generalisation of the étale fundamental group. Although its existence was conjectured by Alexander Grothendieck, the first proof of its existence is due, for schemes defined over fields, to Madhav Nori. A proof of its existence for schemes defined over Dedekind schemes is due to Marco Antei, Michel Emsalem and Carlo Gasbarri.
In mathematics, an essentially finite vector bundle is a particular type of vector bundle defined by Madhav V. Nori, as the main tool in the construction of the fundamental group scheme. Even if the definition is not intuitive there is a nice characterization that makes essentially finite vector bundles quite natural objects to study in algebraic geometry. The following notion of finite vector bundle is due to André Weil and will be needed to define essentially finite vector bundles:
This is a glossary of algebraic geometry.
In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it.
In algebraic geometry, a torsor or a principal bundle is an analogue of a principal bundle in algebraic topology. Because there are few open sets in Zariski topology, it is more common to consider torsors in étale topology or some other flat topologies. The notion also generalizes a Galois extension in abstract algebra. Though other notions of torsors are known in more general context this article will focus on torsors over schemes, the original setting where torsors have been thought for. The word torsor comes from the French torseur. They are indeed widely discussed, for instance, in Michel Demazure's and Pierre Gabriel's famous book Groupes algébriques, Tome I.
In algebraic geometry, the dualizing sheaf on a proper scheme X of dimension n over a field k is a coherent sheaf together with a linear functional
In mathematics, specifically enumerative geometry, the virtual fundamental class of a space is a replacement of the classical fundamental class in its Chow ring which has better behavior with respect to the enumerative problems being considered. In this way, there exists a cycle with can be used for answering specific enumerative problems, such as the number of degree rational curves on a quintic threefold. For example, in Gromov–Witten theory, the Kontsevich moduli spaces
Madhav Vithal Nori is an Indian mathematician. In 1980 he has received the INSA Medal for Young Scientists.
Marco Antei is an Italian mathematician and LGBT+ activist.