Essentially finite vector bundle

Last updated

In mathematics, an essentially finite vector bundle is a particular type of vector bundle defined by Madhav V. Nori, [1] [2] as the main tool in the construction of the fundamental group scheme. Even if the definition is not intuitive there is a nice characterization that makes essentially finite vector bundles quite natural objects to study in algebraic geometry. The following notion of finite vector bundle is due to André Weil and will be needed to define essentially finite vector bundles:

Contents

Finite vector bundles

Let be a scheme and a vector bundle on . For an integral polynomial with nonnegative coefficients define

Then is called finite if there are two distinct polynomials for which is isomorphic to .

Definition

The following two definitions coiincide whenever is a reduced, connected and proper scheme over a perfect field.

According to Borne and Vistoli

A vector bundle is essentially finite if it is the kernel of a morphism where are finite vector bundles. [3]

The original definition of Nori

A vector bundle is essentially finite if it is a subquotient of a finite vector bundle in the category of Nori-semistable vector bundles. [1]

Properties

Notes

  1. 1 2 Nori, Madhav V. (1976). "On the Representations of the Fundamental Group". Compositio Mathematica. 33 (1): 29–42. MR   0417179.
  2. Szamuely, T. (2009). Galois Groups and Fundamental Groups. Vol. 117. Cambridge Studies in Advanced Mathematics.
  3. N. Borne, A. Vistoli The Nori fundamental gerbe of a fibered category, J. Algebr. Geom. 24, No. 2, 311-353 (2015)

Related Research Articles

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc.

In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, the Grothendieck group construction constructs an abelian group from a commutative monoid M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.

In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : EX is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953).. In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, the fundamental group scheme is a group scheme canonically attached to a scheme over a Dedekind scheme. It is a generalisation of the étale fundamental group. Although its existence was conjectured by Alexander Grothendieck, the first proof if its existence is due, for schemes defined over fields, to Madhav Nori,. A proof of its existence for schemes defined over Dedekind schemes is due to Marco Antei, Michel Emsalem and Carlo Gasbarri.

In mathematics, a projective bundle is a fiber bundle whose fibers are projective spaces.

This is a glossary of algebraic geometry.

In algebraic geometry, the Quot scheme is a scheme parametrizing locally free sheaves on a projective scheme. More specifically, if X is a projective scheme over a Noetherian scheme S and if F is a coherent sheaf on X, then there is a scheme whose set of T-points is the set of isomorphism classes of the quotients of that are flat over T. The notion was introduced by Alexander Grothendieck.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U).

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

In mathematics, a Nori semistable vector bundle is a particular type of vector bundle whose first definition has been first implicitely suggested by Madhav V. Nori, as one of the main ingredients for the construction of the fundamental group scheme. The original definition given by Nori was obviously not called Nori semistable. Also, Nori's definition was different from the one suggested nowadays. The category of Nori semistable vector bundles contains the Tannakian category of essentially finite vector bundles, whose naturally associated group scheme is the fundamental group scheme .