"Not even wrong" is a phrase used to describe pseudoscience or bad science. It describes an argument or explanation that purports to be scientific but uses faulty reasoning or speculative premises, which can be neither affirmed nor denied and thus cannot be discussed rigorously and scientifically. Peter Woit uses the phrase "not even wrong" to mean "unfalsifiable". [1]
The phrase is generally attributed to the theoretical physicist Wolfgang Pauli, who was known for his colorful objections to incorrect or careless thinking. [2] [3]
Rudolf Peierls documents an instance in which "a friend showed Pauli the paper of a young physicist which he suspected was not of great value but on which he wanted Pauli's views. Pauli remarked sadly, 'It is not even wrong'." [4] [5] This may also be quoted as "That is not only not right; it is not even wrong", or in Pauli's native German, "Das ist nicht nur nicht richtig; es ist nicht einmal falsch!" Peierls remarks that quite a few apocryphal stories of this kind have been circulated, and mentions that he listed only the ones personally vouched for by him. He quotes another example when Pauli replied to Lev Landau, "What you said was so confused that one could not tell whether it was nonsense or not." [4]
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretation" was apparently coined by Heisenberg during the 1950s to refer to ideas developed in the 1925–1927 period, glossing over his disagreements with Bohr. Consequently, there is no definitive historical statement of what the interpretation entails.
The Pauli effect or Pauli's device corollary is the supposed tendency of technical equipment to encounter critical failure in the presence of certain people. The term was coined after mysterious anecdotal stories involving Austrian theoretical physicist Wolfgang Pauli, describing numerous instances in which demonstrations involving equipment suffered technical problems only when he was present.
Werner Karl Heisenberg was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the Nazi nuclear weapons program during World War II. He published his Umdeutung paper in 1925, a major reinterpretation of old quantum theory. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics".
Wolfgang Ernst Pauli was an Austrian theoretical physicist and a pioneer of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics for his "decisive contribution through his discovery of a new law of Nature, the exclusion principle or Pauli principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.
Synchronicity is a concept introduced by analytical psychiatrist Carl Jung to describe events that coincide in time and appear meaningfully related, yet lack a discoverable causal connection. Jung held this was a healthy function of the mind, that can become harmful within psychosis.
Frederick Reines was an American physicist. He was awarded the 1995 Nobel Prize in Physics for his co-detection of the neutrino with Clyde Cowan in the neutrino experiment. He may be the only scientist in history "so intimately associated with the discovery of an elementary particle and the subsequent thorough investigation of its fundamental properties."
137 is the natural number following 136 and preceding 138.
The Bogdanov affair was an academic dispute over the legitimacy of the doctoral degrees obtained by French twins Igor and Grichka Bogdanov and a series of theoretical physics papers written by them in order to obtain degrees. The papers were published in reputable scientific journals, and were alleged by their authors to culminate in a theory for describing what occurred before and at the Big Bang.
Paul Hermann Scherrer was a Swiss physicist. Born in St. Gallen, Switzerland, he studied at Göttingen, Germany, before becoming a lecturer there. Later, Scherrer became head of the Department of Physics at ETH Zurich.
Sir Rudolf Ernst Peierls, was a German-born British physicist who played a major role in Tube Alloys, Britain's nuclear weapon programme, as well as the subsequent Manhattan Project, the combined Allied nuclear bomb programme. His 1996 obituary in Physics Today described him as "a major player in the drama of the eruption of nuclear physics into world affairs".
Peter Woit is a Latvian-American mathematician who works in twistor theory. He works in the mathematics department at Columbia University. Woit, a critic of string theory, has published a book Not Even Wrong (2006) and writes a blog of the same name.
In crystalline materials, Umklapp scattering is a scattering process that results in a wave vector which falls outside the first Brillouin zone. If a material is periodic, it has a Brillouin zone, and any point outside the first Brillouin zone can also be expressed as a point inside the zone. So, the wave vector is then mathematically transformed to a point inside the first Brillouin zone. This transformation allows for scattering processes which would otherwise violate the conservation of momentum: two wave vectors pointing to the right can combine to create a wave vector that points to the left. This non-conservation is why crystal momentum is not a true momentum.
The Frisch–Peierls memorandum was the first technical exposition of a practical nuclear weapon. It was written by expatriate German-Jewish physicists Otto Frisch and Rudolf Peierls in March 1940 while they were both working for Mark Oliphant at the University of Birmingham in Britain during World War II.
The MAUD Committee was a British scientific working group formed during the Second World War. It was established to perform the research required to determine if an atomic bomb was feasible. The name MAUD came from a strange line in a telegram from Danish physicist Niels Bohr referring to his housekeeper, Maud Ray.
Tony Hilton Royle Skyrme was a British physicist who was born in Lewisham.
Richard Henry Dalitz, FRS was an Australian physicist known for his work in particle physics.
Erich Justus Kretschmann was a German physicist.
In the philosophy of mind, double-aspect theory is the view that the mental and the physical are two aspects of, or perspectives on, the same substance. It is also called dual-aspect monism, not to be confused with mind–body dualism. The theory's relationship to neutral monism is ill-defined,
Neutral monism and the dual-aspect theory share a central claim: there is an underlying reality that is neither mental nor physical. But that is where the agreement stops. Neutral monism has no room for the central feature of the dual-aspect theory: the mental and physical aspects, sides, or properties that characterize the underlying entities of dual-aspect theory. The neutral monist accepts the mental/physical distinction.
The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next is a 2006 book by the theoretical physicist Lee Smolin about the problems with string theory. The book strongly criticizes string theory and its prominence in contemporary theoretical physics, on the grounds that string theory has yet to come up with a single prediction that can be verified using any technology that is likely to be feasible within our lifetimes. Smolin also focuses on the difficulties faced by research in quantum gravity, and by current efforts to come up with a theory explaining all four fundamental interactions. The book is broadly concerned with the role of controversy and diversity of approaches in scientific processes and ethics.
Lectures on Theoretical Physics is a six-volume series of physics textbooks translated from Arnold Sommerfeld's classic German texts Vorlesungen über Theoretische Physik. The series includes the volumes Mechanics, Mechanics of Deformable Bodies, Electrodynamics, Optics, Thermodynamics and Statistical Mechanics, and Partial Differential Equations in Physics. Focusing on one subject each semester, the lectures formed a three-year cycle of courses that Sommerfeld repeatedly taught at the University of Munich for over thirty years. Sommerfeld's lectures were famous and he was held to be one of the greatest physics lecturers of his time.