Nottingham effect

Last updated

In condensed matter physics, the Nottingham effect is a surface cooling and heating mechanism that occurs during field and thermionic electron emission. The effect is named after physicist Wayne B. Nottingham who explained it in a commentary to 1940 experiments by Gertrude M. Fleming and Joseph E. Henderson. [1] [2] [3]

The temperature at which electron emission goes from heating to cooling is called the Nottingham inversion temperature.

Description

Notably, the effect can be either heating or cooling of the surface emitting the electrons, depending upon the energy at which they are supplied. [4] Above the Nottingham inversion temperature, the emission energy exceeds the Fermi energy of the electron supply and the emitted electron carries more energy away from the surface than is returned by the supply of a replacement electron, and the net heat flux from the Nottingham effect switches from heating to cooling the cathode. [4] [1]

Along with Joule heating, the Nottingham effect contributes to the thermal equilibrium of electron emission systems, typically becoming the dominant contributor at very high emission current densities. [4] [5] It comes into play in the operation of field emission array cathodes and other devices that rely upon stimulating Fowler-Nordheim electron emission, [4] usually at the apex of a sharp tip used to create a field enhancement effect. In extreme cases, the Nottingham effect can heat the emitter tips to temperatures exceeding the melting point of the tip material, causing the tip to deform and emit material that may cause a vacuum arc; this is a significant failure mode for tip-based cathodes. [6]

Related Research Articles

<span class="mw-page-title-main">Electron</span> Elementary particle with negative charge

The electron is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, per the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

Wave-particle duality is the concept in quantum mechanics that quantum entities exhibit particle or wave properties according to the experimental circumstances. It expresses the inability of the classical concepts such as particle or wave to fully describe the behavior of quantum objects. During the 19th and early 20th centuries, light was found to behave as a wave then later discovered to have a particulate behavior, whereas electrons behaved like particles in early experiments then later discovered to have wavelike behavior. The concept of duality arose to name these seeming contradictions.

In solid-state physics, the work function is the minimum thermodynamic work needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" means that the final electron position is far from the surface on the atomic scale, but still too close to the solid to be influenced by ambient electric fields in the vacuum. The work function is not a characteristic of a bulk material, but rather a property of the surface of the material.

<span class="mw-page-title-main">Photoluminescence</span> Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode-ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation

Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Thermionic emission</span> Thermally induced flow of charge carriers from a surface

Thermionic emission is the liberation of charged particles from a hot electrode whose thermal energy gives some particles enough kinetic energy to escape the material's surface. The particles, sometimes called thermions in early literature, are now known to be ions or electrons. Thermal electron emission specifically refers to emission of electrons and occurs when thermal energy overcomes the material's work function.

Field electron emission, also known as field emission (FE) and electron field emission, is emission of electrons induced by an electrostatic field. The most common context is field emission from a solid surface into a vacuum. However, field emission can take place from solid or liquid surfaces, into a vacuum, a fluid, or any non-conducting or weakly conducting dielectric. The field-induced promotion of electrons from the valence to conduction band of semiconductors can also be regarded as a form of field emission. The terminology is historical because related phenomena of surface photoeffect, thermionic emission and "cold electronic emission", i.e. the emission of electrons in strong static electric fields, were discovered and studied independently from the 1880s to 1930s. When field emission is used without qualifiers it typically means "cold emission".

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

<span class="mw-page-title-main">Magnon</span> Spin 1 quasiparticle; quantum of a spin wave

A magnon is a quasiparticle, a collective excitation of the spin structure of an electron in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of energy and lattice momentum, and are spin-1, indicating they obey boson behavior.

The Smith–Purcell effect was the precursor of the free-electron laser (FEL). It was studied by Steve Smith, a graduate student under the guidance of Edward Purcell. In their experiment, they sent an energetic beam of electrons very closely parallel to the surface of a ruled optical diffraction grating, and thereby generated visible light. Smith showed there was negligible effect on the trajectory of the inducing electrons. Essentially, this is a form of Cherenkov radiation where the phase velocity of the light has been altered by the periodic grating. However, unlike Cherenkov radiation, there is no minimum or threshold particle velocity.

A thermionic converter consists of a hot electrode which thermionically emits electrons over a potential energy barrier to a cooler electrode, producing a useful electric power output. Caesium vapor is used to optimize the electrode work functions and provide an ion supply to neutralize the electron space charge.

A vacuum arc can arise when the surfaces of metal electrodes in contact with a good vacuum begin to emit electrons either through heating or in an electric field that is sufficient to cause field electron emission. Once initiated, a vacuum arc can persist, since the freed particles gain kinetic energy from the electric field, heating the metal surfaces through high-speed particle collisions. This process can create an incandescent cathode spot, which frees more particles, thereby sustaining the arc. At sufficiently high currents an incandescent anode spot may also be formed.

<span class="mw-page-title-main">Nernst effect</span>

In physics and chemistry, the Nernst effect is a thermoelectric phenomenon observed when a sample allowing electrical conduction is subjected to a magnetic field and a temperature gradient normal (perpendicular) to each other. An electric field will be induced normal to both.

<span class="mw-page-title-main">Schottky effect</span>

The Schottky effect or field enhanced thermionic emission is a phenomenon in condensed matter physics named after Walter H. Schottky. In electron emission devices, especially electron guns, the thermionic electron emitter will be biased negative relative to its surroundings. This creates an electric field of magnitude F at the emitter surface. Without the field, the surface barrier seen by an escaping Fermi-level electron has height W equal to the local work-function. The electric field lowers the surface barrier by an amount ΔW, and increases the emission current. It can be modeled by a simple modification of the Richardson equation, by replacing W by (W − ΔW). This gives the equation

<span class="mw-page-title-main">Hot cathode</span> Type of electrode

In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.

<span class="mw-page-title-main">Sound amplification by stimulated emission of radiation</span> Device that emites acoustic radiation

Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.

Michał Gryziński was a Polish nuclear physicist specialized in plasma physics. In 1965 he developed some widely used empirical models to reproduce some of the results of electron scattering experiments.

A photoinjector is a type of source for intense electron beams which relies on the photoelectric effect. A laser pulse incident onto the cathode of a photoinjector drives electrons out of it, and into the accelerating field of the electron gun. In comparison with the widespread thermionic electron gun, photoinjectors produce electron beams of higher brightness, which means more particles packed into smaller volume of phase space. Photoinjectors serve as the main electron source for single-pass synchrotron light sources, such as free-electron lasers and for ultrafast electron diffraction setups. The first RF photoinjector was developed in 1985 at Los Alamos National Laboratory and used as the source for a free-electron-laser experiment. High-brightness electron beams produced by photoinjectors are used directly or indirectly to probe the molecular, atomic and nuclear structure of matter for fundamental research, as well as material characterization.

<span class="mw-page-title-main">Hong Chaosheng</span> Chinese physicist

Hong Chaosheng was a Chinese physicist best known for studying cryogenics. Hong was the teacher of Zhao Zhongxian, a laureate of Highest Science and Technology Award, the highest scientific award issued by the Chinese Academy of Sciences to scientists working in China.

References

  1. 1 2 Charbonnier, F. M.; Strayer, R. W.; Swanson, L. W.; Martin, E. E. (1964-09-28). "Nottingham Effect in Field and T − F Emission: Heating and Cooling Domains, and Inversion Temperature". Physical Review Letters. 13 (13): 397–401. doi:10.1103/PhysRevLett.13.397. ISSN   0031-9007.
  2. Nottingham, W. B. (1941-06-01). "Remarks on Energy Losses Attending Thermionic Emission of Electrons from Metals". Physical Review. 59 (11): 906–907. doi:10.1103/PhysRev.59.906.2. ISSN   0031-899X.
  3. Fleming, G. M.; Henderson, Joseph E. (1940-11-15). "The Energy Losses Attending Field Current and Thermionic Emission of Electrons from Metals". Physical Review. 58 (10): 887–894. doi:10.1103/PhysRev.58.887. ISSN   0031-899X.
  4. 1 2 3 4 Paulini, J; Klein, T; Simon, G (1993-08-14). "Thermo-field emission and the Nottingham effect". Journal of Physics D: Applied Physics. 26 (8): 1310–1315. doi:10.1088/0022-3727/26/8/024. ISSN   0022-3727.
  5. Fursey, George N. (2007-12-24). Field Emission in Vacuum Microelectronics. Springer Science & Business Media. ISBN   978-0-387-27419-5.
  6. Kyritsakis, A. (November 21, 2016). "A general computational method for electron emission and thermal effects in field emitting nanotips". Computational Materials Science. 128: 15–21. arXiv: 1609.02364 . doi:10.1016/j.commatsci.2016.11.010.