Numerical analytic continuation

Last updated

In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from Quantum Monte Carlo simulations, which often compute Green function values only at imaginary times or Matsubara frequencies.

Contents

Mathematically, the problem reduces to solving a Fredholm integral equation of the first kind with an ill-conditioned kernel. As a result, it is an ill-posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution. There are different methods for solving this problem including the maximum entropy method, [1] [2] [3] [4] the average spectrum method [5] [6] [7] [8] and Pade approximation methods. [9] [10]

Examples

A common analytic continuation problem is obtaining the spectral function at real frequencies from the Green function values at Matsubara frequencies by numerically inverting the integral equation

where for fermionic systems or for bosonic ones and is the inverse temperature. This relation is an example of Kramers-Kronig relation.


The spectral function can also be related to the imaginary-time Green function be applying the inverse Fourier transform to the above equation

with . Evaluating the summation over Matsubara frequencies gives the desired relation

where the upper sign is for fermionic systems and the lower sign is for bosonic ones.


Another example of the analytic continuation is calculating the optical conductivity from the current-current correlation function values at Matsubara frequencies. The two are related as following

Software

See also

Related Research Articles

<span class="mw-page-title-main">Short-time Fourier transform</span> Fourier-related transform suited to signals that change rather quickly in time

The short-time Fourier transform (STFT) is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

<span class="mw-page-title-main">Dirac comb</span> Periodic distribution ("function") of "point-mass" Dirac delta sampling

In mathematics, a Dirac comb is a periodic function with the formula for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb, hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function.

The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:

<span class="mw-page-title-main">Eisenstein integer</span> Complex number whose mapping on a coordinate plane produces a triangular lattice

In mathematics, the Eisenstein integers, occasionally also known as Eulerian integers, are the complex numbers of the form

The Kramers–Kronig relations, sometimes abbreviated as KK relations, are bidirectional mathematical relations, connecting the real and imaginary parts of any complex function that is analytic in the upper half-plane. The relations are often used to compute the real part from the imaginary part of response functions in physical systems, because for stable systems, causality implies the condition of analyticity, and conversely, analyticity implies causality of the corresponding stable physical system. The relation is named in honor of Ralph Kronig and Hans Kramers. In mathematics, these relations are known by the names Sokhotski–Plemelj theorem and Hilbert transform.

<span class="mw-page-title-main">Instantaneous phase and frequency</span> Electrical engineering concept

Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. The instantaneous phase (also known as local phase or simply phase) of a complex-valued function s(t), is the real-valued function:

The Cole–Cole equation is a relaxation model that is often used to describe dielectric relaxation in polymers.

The Mason–Weaver equation describes the sedimentation and diffusion of solutes under a uniform force, usually a gravitational field. Assuming that the gravitational field is aligned in the z direction, the Mason–Weaver equation may be written

The Frank–Tamm formula yields the amount of Cherenkov radiation emitted on a given frequency as a charged particle moves through a medium at superluminal velocity. It is named for Russian physicists Ilya Frank and Igor Tamm who developed the theory of the Cherenkov effect in 1937, for which they were awarded a Nobel Prize in Physics in 1958.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

<span class="mw-page-title-main">Kicked rotator</span>

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

Dynamical mean-field theory (DMFT) is a method to determine the electronic structure of strongly correlated materials. In such materials, the approximation of independent electrons, which is used in density functional theory and usual band structure calculations, breaks down. Dynamical mean-field theory, a non-perturbative treatment of local interactions between electrons, bridges the gap between the nearly free electron gas limit and the atomic limit of condensed-matter physics.

In thermal quantum field theory, the Matsubara frequency summation is a technique used to simplify calculations involving Euclidean path integrals.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

In computational solid state physics, Continuous-time quantum Monte Carlo (CT-QMC) is a family of stochastic algorithms for solving the Anderson impurity model at finite temperature. These methods first expand the full partition function as a series of Feynman diagrams, employ Wick's theorem to group diagrams into determinants, and finally use Markov chain Monte Carlo to stochastically sum up the resulting series.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

<span class="mw-page-title-main">Near-field radiative heat transfer</span> Branch of radiative heat transfer

Near-field radiative heat transfer (NFRHT) is a branch of radiative heat transfer which deals with situations for which the objects and/or distances separating objects are comparable or smaller in scale or to the dominant wavelength of thermal radiation exchanging thermal energy. In this regime, the assumptions of geometrical optics inherent to classical radiative heat transfer are not valid and the effects of diffraction, interference, and tunneling of electromagnetic waves can dominate the net heat transfer. These "near-field effects" can result in heat transfer rates exceeding the blackbody limit of classical radiative heat transfer.

References

  1. Silver, R. N.; Sivia, D. S.; Gubernatis, J. E. (1990-02-01). "Maximum-entropy method for analytic continuation of quantum Monte Carlo data". Physical Review B. 41 (4): 2380–2389. Bibcode:1990PhRvB..41.2380S. doi:10.1103/PhysRevB.41.2380. PMID   9993975.
  2. Jarrell, Mark; Gubernatis, J. E. (1996-05-01). "Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data". Physics Reports. 269 (3): 133–195. Bibcode:1996PhR...269..133J. doi:10.1016/0370-1573(95)00074-7. ISSN   0370-1573.
  3. Reymbaut, A.; Bergeron, D.; Tremblay, A.-M. S. (2015-08-27). "Maximum entropy analytic continuation for spectral functions with nonpositive spectral weight". Physical Review B. 92 (6): 060509. arXiv: 1507.01956 . Bibcode:2015PhRvB..92f0509R. doi:10.1103/PhysRevB.92.060509. S2CID   56385057.
  4. Burnier, Yannis; Rothkopf, Alexander (2013-10-31). "Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories". Physical Review Letters. 111 (18): 182003. arXiv: 1307.6106 . Bibcode:2013PhRvL.111r2003B. doi:10.1103/PhysRevLett.111.182003. PMID   24237510.
  5. White, S. R. (1991). "The Average Spectrum Method for the Analytic Continuation of Imaginary-Time Data". In Landau, David P.; Mon, K. K.; Schüttler, Heinz-Bernd (eds.). Computer Simulation Studies in Condensed Matter Physics III. Springer Proceedings in Physics. Vol. 53. Berlin, Heidelberg: Springer. pp. 145–153. doi:10.1007/978-3-642-76382-3_13. ISBN   978-3-642-76382-3.
  6. Sandvik, Anders W. (1998-05-01). "Stochastic method for analytic continuation of quantum Monte Carlo data". Physical Review B. 57 (17): 10287–10290. Bibcode:1998PhRvB..5710287S. doi:10.1103/PhysRevB.57.10287.
  7. Ghanem, Khaldoon; Koch, Erik (2020-02-10). "Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid". Physical Review B. 101 (8): 085111. arXiv: 1912.01379 . Bibcode:2020PhRvB.101h5111G. doi:10.1103/PhysRevB.101.085111. S2CID   208548627.
  8. Ghanem, Khaldoon; Koch, Erik (2020-07-06). "Extending the average spectrum method: Grid point sampling and density averaging". Physical Review B. 102 (3): 035114. arXiv: 2004.01155 . Bibcode:2020PhRvB.102c5114G. doi:10.1103/PhysRevB.102.035114. S2CID   214775183.
  9. Beach, K. S. D.; Gooding, R. J.; Marsiglio, F. (2000-02-15). "Reliable Pad\'e analytical continuation method based on a high-accuracy symbolic computation algorithm". Physical Review B. 61 (8): 5147–5157. arXiv: cond-mat/9908477 . Bibcode:2000PhRvB..61.5147B. doi:10.1103/PhysRevB.61.5147. S2CID   17880539.
  10. Östlin, A.; Chioncel, L.; Vitos, L. (2012-12-06). "One-particle spectral function and analytic continuation for many-body implementation in the exact muffin-tin orbitals method". Physical Review B. 86 (23): 235107. arXiv: 1209.5283 . Bibcode:2012PhRvB..86w5107O. doi:10.1103/PhysRevB.86.235107. S2CID   8434964.