Numerosity adaptation effect

Last updated
An example of the numerosity adaptation effect Numerosityadaptation.png
An example of the numerosity adaptation effect

The numerosity adaptation effect is a perceptual phenomenon in numerical cognition which demonstrates non-symbolic numerical intuition and exemplifies how numerical percepts can impose themselves upon the human brain automatically. This effect was first described in 2008. [1] [2]

Contents

Presently, this effect is described only for controlled experimental conditions. In the illustration, a viewer should have a strong impression that the left display (lower figure) is more numerous than the right, after 30 seconds of viewing the adaptation (upper figure), although both have exactly the same number of dots. The viewer might also underestimate the number of dots presented in the display. [1]

Both effects are resistant to manipulation of the non-numerical parameters of the display. Thus, this effect cannot be simply explained in terms of size, density, or contrast. [3] [4]

Perhaps the most astonishing aspect of these effects is that they happen immediately, and without conscious control (i.e., knowing that the numbers are equal would not hamper their happening). [1] This points to the operation of a special and largely automatic processing system. As noted by Burr & Ross (2008):

Just as we have a direct visual sense of the reddishness of half a dozen ripe cherries, so we do of their sixishness. [2]

Possible explanations

Few explanations were suggested to explain these phenomena. It was argued that they are heavily dependent on density and less on numerosity. Also, it was suggested that numerosity may be correlated with kurtosis and that the results may be better explained in terms of texture density such that only dots falling within the spatial region where the test is displayed effectively adapt the region. [5]

However, as the display in the original experiments was of spots uniformly either white or black, the kurtosis account is inapplicable. The texture density explanation doesn't seem to disentangle the complexity of these phenomena as in the display the left field adapts to many dots, the right field to few, and these adapters selectively affect the relevant test stimuli. It is not the number of dots in the entire display that causes the adaptation but only those within a particular area. [4] At present, why adaptation have such profound effect on numerosity estimates remains largely unexplained. [1]

See also

Related Research Articles

Numeracy

Numeracy is the ability to reason and to apply simple numerical concepts. Basic numeracy skills consist of comprehending fundamental arithmetical operations like addition, subtraction, multiplication, and division. For example, if one can understand simple mathematical equations such as 2 + 2 = 4, then one would be considered to possess at least basic numeric knowledge. Substantial aspects of numeracy also include number sense, operation sense, computation, measurement, geometry, probability and statistics. A numerically literate person can manage and respond to the mathematical demands of life.

Animal cognition Intelligence of non-human animals

Animal cognition encompasses the mental capacities of non-human animals including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.

Dyscalculia Difficulty in learning or comprehending arithmetic

Dyscalculia is a disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, performing mathematical calculations and learning facts in mathematics. It is sometimes informally known as "math dyslexia", though this can be misleading as dyslexia is a different condition from dyscalculia.

Subitizing

Subitizing is the rapid, accurate, and confident judgments of numbers performed for small numbers of items. The term was coined in 1949 by E.L. Kaufman et al., and is derived from the Latin adjective subitus and captures a feeling of immediately knowing how many items lie within the visual scene, when the number of items present falls within the subitizing range. Sets larger than about four items cannot be subitized unless the items appear in a pattern that the person is familiar with. Large, familiar sets might be counted one-by-one. A person could also estimate the number of a large set—a skill similar to, but different from, subitizing.

Experimental philosophy is an emerging field of philosophical inquiry that makes use of empirical data—often gathered through surveys which probe the intuitions of ordinary people—in order to inform research on philosophical questions. This use of empirical data is widely seen as opposed to a philosophical methodology that relies mainly on a priori justification, sometimes called "armchair" philosophy, by experimental philosophers. Experimental philosophy initially began by focusing on philosophical questions related to intentional action, the putative conflict between free will and determinism, and causal vs. descriptive theories of linguistic reference. However, experimental philosophy has continued to expand to new areas of research.

Sensory processing is the process that organizes sensation from one's own body and the environment, thus making it possible to use the body effectively within the environment. Specifically, it deals with how the brain processes multiple sensory modality inputs, such as proprioception, vision, auditory system, tactile, olfactory, vestibular system, interoception, and taste into usable functional outputs.

Number form Mental map of numbers

A number form is a mental map of numbers, which automatically and involuntarily appears whenever someone who experiences number-forms thinks of numbers. Numbers are mapped into distinct spatial locations and the mapping may be different across individuals. Number forms were first documented and named by Sir Francis Galton in his The Visions of Sane Persons. Later research has identified them as a type of synesthesia.

Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.

Stanislas Dehaene French cognitive neuroscientist

Stanislas Dehaene is a French author and cognitive neuroscientist whose research centers on a number of topics, including numerical cognition, the neural basis of reading and the neural correlates of consciousness. As of 2017, he is a professor at the Collège de France and, since 1989, the director of INSERM Unit 562, "Cognitive Neuroimaging".

In human developmental psychology or non-human primate experiments, ordinal numerical competence or ordinal numerical knowledge is the ability to count objects in order and to understand the greater than and less than relationships between numbers. It has been shown that children as young as two can make some ordinal numerical decisions. There are studies indicating that some non-human primates, like chimpanzees and rhesus monkeys have some ordinal numerical competence.

Superior temporal sulcus Part of the brains temporal lobe

The superior temporal sulcus (STS) is the sulcus separating the superior temporal gyrus from the middle temporal gyrus in the temporal lobe of the brain. A sulcus is a deep groove that curves into the largest part of the brain, the cerebrum, and a gyrus is the a ridge that curves outward of the cerebrum.

The approximate number system (ANS) is a cognitive system that supports the estimation of the magnitude of a group without relying on language or symbols. The ANS is credited with the non-symbolic representation of all numbers greater than four, with lesser values being carried out by the parallel individuation system, or object tracking system. Beginning in early infancy, the ANS allows an individual to detect differences in magnitude between groups. The precision of the ANS improves throughout childhood development and reaches a final adult level of approximately 15% accuracy, meaning an adult could distinguish 100 items versus 115 items without counting. The ANS plays a crucial role in development of other numerical abilities, such as the concept of exact number and simple arithmetic. The precision level of a child's ANS has been shown to predict subsequent mathematical achievement in school. The ANS has been linked to the intraparietal sulcus of the brain.

In cognitive psychology, intertrial priming is an accumulation of the priming effect over multiple trials, where "priming" is the effect of the exposure to one stimulus on subsequently presented stimuli. Intertrial priming occurs when a target feature is repeated from one trial to the next, and typically results in speeded response times to the target. A target is the stimulus participants are required to search for. For example, intertrial priming occurs when the task is to respond to either a red or a green target, and the response time to a red target is faster if the preceding trial also has a red target.

In Psychology, the numerical Stroop effect demonstrates the relationship between numerical values and physical sizes. When digits are presented visually, they can be physically large or small, irrespective of their actual values. Congruent pairs occur when size and value correspond while incongruent pairs occur when size and value are incompatible. It was found that when people are asked to compare digits, their reaction time tends to be slower in the case of incongruent pairs. This reaction time difference between congruent and incongruent pairs is termed the numerical Stroop effect

Number sense in animals is the ability of creatures to represent and discriminate quantities of relative sizes by number sense. It has been observed in various species, from fish to primates. Animals are believed to have an approximate number system, the same system for number representation demonstrated by humans, which is more precise for smaller quantities and less so for larger values. An exact representation of numbers higher than 3 has not been attested in wild animals, but can be demonstrated after a period of training in captive animals.

The parallel individuation system, also called object tracking system is a non-symbolic cognitive system that supports the representation of numerical values from zero to three or four. It is one of the two cognitive systems responsible for the representation of number, the other one being the approximate number system. Unlike the approximate number system, which is not precise and provides only an estimation of the number, the parallel individuation system is an exact system and encodes the exact numerical identity of the individual items. The parallel individuation system has been attested in human adults, non-human animals, such as fish and human infants, although performance of infants is dependent on their age and task.

Avishai Henik Israeli neurocognitive psychologist (born 1945)

Avishai Henik is an Israeli neurocognitive psychologist who works at Ben-Gurion University of the Negev (BGU). Henik studies voluntary and automatic (non-voluntary/reflexive) processes involved in cognitive operations. He characterizes automatic processes, and clarifies their importance, the relationship between automatic and voluntary processes, and their neural underpinnings. Most of his work involves research with human participants and in recent years, he has been working with Archer fish in order to examine evolutionary aspects of various cognitive functions.

Motion silencing illusion

Motion silencing is an illusion or perceptual phenomenon in which objects that are rapidly changing in a particular salient property seem to cease changing with motion. The illusion was first identified by Jordan Suchow and George Alvarez in the publication of their research on the topic.

Roi Cohen Kadosh Israeli-British cognitive neuroscientist

Roi Cohen Kadosh is an Israeli-British cognitive neuroscientist notable for his work on numerical and mathematical cognition and learning and cognitive enhancement. He is a professor of Cognitive Neuroscience and the head of the Cognition, Learning, and Plasticity Group at the University of Oxford and a senior fellow in Psychology at Jesus College.

Visual crowding is the inability to view a target stimulus distinctly when presented in a clutter. Crowding impairs the ability to discriminate object features and contours among flankers, which in turn impairs people's ability to respond appropriately to the target stimulus.

References

  1. 1 2 3 4 Dehaene, Stanislas (2009). "Origins of Mathematical Intuitions The Case of Arithmetic". Annals of the New York Academy of Sciences. 1156: 232–259. doi:10.1111/j.1749-6632.2009.04469.x. PMID   19338511.
  2. 1 2 Burr, David; John Ross (2008). "A Visual Sense of Number". Current Biology. 18 (6): 425–428. doi: 10.1016/j.cub.2008.02.052 . PMID   18342507.
  3. Izard, Véronique; Stanislas Dehaene (2008). "Calibrating the mental number line" (PDF). Cognition. 106 (3): 1221–1247. CiteSeerX   10.1.1.148.2960 . doi:10.1016/j.cognition.2007.06.004. PMID   17678639 . Retrieved 2010-04-01.
  4. 1 2 Burr, David; John Ross (September 23, 2008). "Response: Visual number". Current Biology. 18 (18): R857–R858. doi: 10.1016/j.cub.2008.07.052 .
  5. Durgin, Frank H (September 23, 2008). "Texture density adaptation and visual number revisited". Current Biology. 18 (18): R855–R856. doi: 10.1016/j.cub.2008.07.053 . PMID   18812077.