OSAM-1

Last updated

OSAM-1 (On-orbit Servicing, Assembly, and Manufacturing 1) was a 2016-2024 conceptual NASA mission and spacecraft designed to test on-orbit refilling of satellites. The program was cancelled in 2024, two years ahead of its planned launch date. It was initially known as Restore-L. [1] [2] [3]

Contents

Originally scheduled to launch in 2020, [4] its launch at the time of cancellation was planned for no earlier than 2026. [5] The primary objective of the concept mission and spacecraft was the complex refueling of Landsat 7, a satellite launched in 1999, that was not designed for on-orbit servicing. This would have involved grasping the satellite with a mechanical arm, gaining access to the satellite's fuel tank by cutting through insulation and wires and unscrewing a bolt, and then attaching a hose to pump in hydrazine fuel. At the time the mission was conceived, it was expected to be the first refueling of a satellite in space, and a demonstration of the potential to repair some of the thousands of active satellites in orbit and keep them in operation for a longer time. [1] Because the satellites now in space were not designed to be serviced, there are significant challenges to doing so successfully. [1] [2]

OSAM-1's second objective was to deploy a separate robot called SPIDER (Space Infrastructure Dexterous Robot) to build a new structure in space. Using robots to build and assemble new structural components from scratch would be an important step towards a type of space-based construction that had been impossible to date. [1]

Description

The OSAM-1 spacecraft was to include:

History

In 2016, NASA's Restore-L satellite was intended to refuel Landsat 7. [4]

In 2020, SPIDER was added and the name was changed from Restore-L to OSAM-1.

On 1 March 2024, NASA announced that OSAM-1 had been cancelled due to "continued technical, cost, and schedule challenges, and a broader community evolution away from refueling unprepared spacecraft." [6]

Cost & legacy

At cancellation in 2024, about $2 billion had been invested in the project. [7]

Progression

A subsequent mission, OSAM-2, would have also had two robotic arms. [8] OSAM-2 would have used ModuLink software which is based on xLink. [8] In 2023, NASA decided to conclude the OSAM-2 project without proceeding to a flight demonstration. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Intelsat</span> Luxembourgish communications satellite services provider

Intelsat S.A. is a multinational satellite services provider with corporate headquarters in Luxembourg and administrative headquarters in Tysons, Virginia, United States. Originally formed as International Telecommunications Satellite Organization, from 1964 to 2001, it was an intergovernmental consortium owning and managing a constellation of communications satellites providing international telecommunications and broadcast services.

<span class="mw-page-title-main">Spacecraft</span> Vehicle or machine designed to fly in space

A spacecraft is a vehicle that is designed to fly and operate in outer space. Spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle.

<span class="mw-page-title-main">Landsat 7</span> American Earth-observing satellite launched in 1999 as part of the Landsat program

Landsat 7 is the seventh satellite of the Landsat program. Launched on 15 April 1999, Landsat 7's primary goal is to refresh the global archive of satellite photos, providing up-to-date and cloud-free images. The Landsat program is managed and operated by the United States Geological Survey, and data from Landsat 7 is collected and distributed by the USGS. The NASA WorldWind project allows 3D images from Landsat 7 and other sources to be freely navigated and viewed from any angle. The satellite's companion, Earth Observing-1, trailed by one minute and followed the same orbital characteristics, but in 2011 its fuel was depleted and EO-1's orbit began to degrade. Landsat 7 was built by Lockheed Martin Space Systems.

<span class="mw-page-title-main">Orbital Express</span> US project to autonomously service satellites in orbit ~2007

Orbital Express was a space mission managed by the United States Defense Advanced Research Projects Agency (DARPA) and a team led by engineers at NASA's Marshall Space Flight Center (MSFC). The Orbital Express program was aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consisted of two spacecraft: the ASTRO servicing satellite, and a prototype modular next-generation serviceable satellite; NEXTSat. The mission launched from Cape Canaveral Air Force Station on 8 March 2007, aboard an Atlas V expendable launch vehicle. The launch was part of the United States Air Force Space Test Program STP-1 mission.

<span class="mw-page-title-main">Landsat 8</span> American Earth-observing satellite launched in 2013 as part of the Landsat program

Landsat 8 is an American Earth observation satellite launched on 11 February 2013. It is the eighth satellite in the Landsat program; the seventh to reach orbit successfully. Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration between NASA and the United States Geological Survey (USGS). NASA Goddard Space Flight Center in Greenbelt, Maryland, provided development, mission systems engineering, and acquisition of the launch vehicle while the USGS provided for development of the ground systems and will conduct on-going mission operations. It comprises the camera of the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which can be used to study Earth surface temperature and is used to study global warming.

<span class="mw-page-title-main">Orbital propellant depot</span> Cache of propellant used to refuel spacecraft

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

<span class="mw-page-title-main">Docking and berthing of spacecraft</span> Joining of two or more space vehicles

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or partially permanent such as for space station modules.

Space Infrastructure Servicing (SIS) is a spacecraft concept being developed by Canadian aerospace firm MDA to operate as a small-scale in-space refueling depot for communication satellites in geosynchronous orbit.

<span class="mw-page-title-main">Robotic Refueling Mission</span>

The Robotic Refueling Mission (RRM) is a NASA technology demonstration mission with equipment launches in both 2011 and 2013 to increase the technological maturity of in-space rocket propellant transfer technology by testing a wide variety of potential propellant transfer hardware, of both new and existing satellite designs.

<span class="mw-page-title-main">Kounotori 3</span> 2012 Japanese resupply spaceflight to the ISS

Kounotori 3, also known as HTV-3, was the third flight of the Japanese H-II Transfer Vehicle. It was launched on 21 July 2012 to resupply the International Space Station (ISS) aboard the H-IIB Launch Vehicle No. 3 manufactured by Mitsubishi Heavy Industries (MHI) and JAXA. Kounotori 3 arrived at the ISS on 27 July 2012, and Expedition 32 Flight Engineer and JAXA astronaut Akihiko Hoshide used the International Space Station's Canadarm2 robotic arm to install Kounotori 3, to its docking port on the Earth-facing side (nadir) of the Harmony module at 14:34 UTC.

On-orbit satellite servicing refers to refueling or repairing space satellites while in orbit.

<span class="mw-page-title-main">Landsat 9</span> American Earth-observing satellite launched in 2021 as part of the Landsat program

Landsat 9 is an Earth observation satellite launched on 27 September 2021 from Space Launch Complex-3E at Vandenberg Space Force Base on an Atlas V 401 launch vehicle. NASA is in charge of building, launching, and testing the satellite, while the United States Geological Survey (USGS) operates the satellite, and manages and distributes the data archive. It is the ninth satellite developed in the Landsat program, and eighth to reach orbit. The Critical Design Review (CDR) was completed by NASA in April 2018, and Northrop Grumman Innovation Systems (NGIS) was given the go-ahead to manufacture the satellite.

<span class="mw-page-title-main">Lunar Gateway</span> Lunar orbital space station under development

The Lunar Gateway, or simply Gateway, is a space station which is planned to be assembled in orbit around the Moon. The Gateway is intended to serve as a communication hub, science laboratory, and habitation module for astronauts as part of the Artemis program. It is a multinational collaborative project: participants include NASA, the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA) and the Mohammed Bin Rashid Space Centre (MBRSC). The Gateway is planned to be the first space station beyond low Earth orbit.

<span class="mw-page-title-main">NOAA-21</span> NASA/NOAA weather satellite (2022–Present)

NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and joined NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.

<span class="mw-page-title-main">2022 in spaceflight</span>

The year 2022 witnessed the number of launches of SpaceX's Falcon rocket family surpassing the CNSA's Long March rocket family, making the United States the country with the highest number of launches in 2022 instead of China. This year also featured the first successful launch of Long March 6A, Nuri, Angara 1.2, Vega C, Kinetica-1, and Jielong-3. National space agencies' activities in this year is also marred by the Russian invasion of Ukraine, leading to tension between Roscosmos and Western space agencies, threats of ending collaboration on the International Space Station (ISS), and delays on space missions.

<span class="mw-page-title-main">Cygnus NG-16</span> 2021 American resupply spaceflight to the ISS

NG-16, previously known as OA-16, was the sixteenth flight of the Northrop Grumman robotic resupply spacecraft Cygnus and its fifteenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS-2) contract with NASA. The mission was launched on 10 August 2021 at 22:01:05 UTC, for a (planned) 90-day mission at the ISS. This was the fifth launch of Cygnus under the CRS-2 contract.

<span class="mw-page-title-main">Power and Propulsion Element</span> Power and propulsion module for the Gateway space station

The Power and Propulsion Element (PPE), previously known as the Asteroid Redirect Vehicle propulsion system, is a planned solar electric ion propulsion module being developed by Maxar Technologies for NASA. It is one of the major components of the Lunar Gateway. The PPE will allow access to the entire lunar surface and a wide range of lunar orbits and double as a space tug for visiting craft.

<span class="mw-page-title-main">Cygnus NG-18</span> 2022 American resupply spaceflight to the ISS

NG-18 was the eighteenth flight of the Northrop Grumman robotic resupply spacecraft Cygnus and its seventeenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS-2) contract with NASA. The mission successfully launched on 7 November 2022 at 10:32:42 UTC. This was the seventh launch of Cygnus under the CRS-2 contract.

<span class="mw-page-title-main">Robotic Servicing of Geosynchronous Satellites program</span>

DARPA's Robotic Servicing of Geosynchronous Satellites (RSGS) program leverages commercial space technology to inspect and repair aging or broken satellites in the geosynchronous Earth orbit (GEO), about 35,786 kilometers from Earth.

References

  1. 1 2 3 4 Kleiner, Kurt (24 February 2022). "Orbiting robots could help fix and fuel satellites in space". Knowable Magazine. doi: 10.1146/knowable-022422-1 . S2CID   247119849 . Retrieved 10 March 2022.
  2. 1 2 Henshaw, Carl Glen; Glassner, Samantha; Naasz, Bo; Roberts, Brian (3 May 2022). "Grappling Spacecraft". Annual Review of Control, Robotics, and Autonomous Systems. 5: 137–159. doi:10.1146/annurev-control-042920-011106. ISSN   2573-5144. S2CID   242628083 . Retrieved 10 March 2022.
  3. "OSAM-1 Mission". NASA. Retrieved 10 March 2022.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. 1 2 Hall, Loura (22 June 2016). "NASA's Restore-L Mission to Refuel Landsat 7, Demonstrate Technologies". NASA. Retrieved 10 March 2022.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. "OSAM-1: Proving Satellite Servicing—Starting with Landsat 7". Goddard Space Flight Center . NASA. 26 August 2022. Retrieved 5 December 2023.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. Foust, Jeff (1 March 2024). "NASA cancels OSAM-1 satellite servicing technology mission". SpaceNews . Retrieved 2 March 2024.
  7. Oxford, Clarence (3 March 2024). "NASA Ends $2 Billion Satellite Refueling Project Amid Challenges". Space Daily. Retrieved 17 March 2024.
  8. "On-Orbit Servicing, Assembly, and Manufacturing 2 (OSAM-2)". NASA. 30 October 2023. Retrieved 17 March 2024.PD-icon.svg This article incorporates text from this source, which is in the public domain .