Object code

Last updated

In computing, object code or object module is the product of an assembler or compiler. [1]

In a general sense, object code is a sequence of statements or instructions in a computer language, [2] usually a machine code language (i.e., binary) or an intermediate language such as register transfer language (RTL). The term indicates that the code is the goal or result of the compiling process, with some early sources referring to source code as a "subject program".[ citation needed ]

Details

Object files can in turn be linked to form an executable file or library file. In order to be used, object code must either be placed in an executable file, a library file, or an object file.

Object code is a portion of machine code that has not yet been linked into a complete program. It is the machine code for one particular library or module that will make up the completed product. It may also contain placeholders or offsets, not found in the machine code of a completed program, that the linker will use to connect everything together. Whereas machine code is binary code that can be executed directly by the CPU, object code has the jumps and inter-module references partially parametrized so that a linker can fill them in. An object file is assumed to begin at a specific location in memory, often zero. It contains information on instructions that reference memory, so that the linker can relocate the code when combining multiple object files into a single program.

An assembler is used to convert assembly code into machine code (object code). A linker links several object (and library) files to generate an executable. Assemblers (and some compilers) can also assemble directly to machine code to produce executable files without the object intermediary step. [3]

Related Research Articles

<span class="mw-page-title-main">Assembly language</span> Low-level programming language

In computer programming, assembly language, often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of, e.g., memory locations, registers, and macros are generally also supported.

<span class="mw-page-title-main">Linker (computing)</span> Computer program which combines multiple object files into a single file

In computing, a linker or link editor is a computer system program that takes one or more object files and combines them into a single executable file, library file, or another "object" file.

A disassembler is a computer program that translates machine language into assembly language—the inverse operation to that of an assembler. Disassembly, the output of a disassembler, is often formatted for human-readability rather than suitability for input to an assembler, making it principally a reverse-engineering tool. Common uses of disassemblers include analyzing high-level programming language compilers output and their optimizations, recovering source code of a program whose original source was lost, malware analysis, modifying software, and software cracking.

<span class="mw-page-title-main">Interpreter (computing)</span> Program that executes source code without a separate compilation step

In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution:

  1. Parse the source code and perform its behavior directly;
  2. Translate source code into some efficient intermediate representation or object code and immediately execute that;
  3. Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter's virtual machine.
<span class="mw-page-title-main">Application binary interface</span> Binary interface between two program units

In computer software, an application binary interface (ABI) is an interface between two binary program modules. Often, one of these modules is a library or operating system facility, and the other is a program that is being run by a user.

<span class="mw-page-title-main">Library (computing)</span> Collection of resources used to develop a computer program

In computer science, a library is a collection of read-only resources that is leveraged during software development to implement a computer program.

In computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate significant areas of computing systems, making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.

A low-level programming language is a programming language that provides little or no abstraction from a computer's instruction set architecture; commands or functions in the language are structurally similar to a processor's instructions. Generally, this refers to either machine code or assembly language. Because of the low abstraction between the language and machine language, low-level languages are sometimes described as being "close to the hardware". Programs written in low-level languages tend to be relatively non-portable, due to being optimized for a certain type of system architecture.

<span class="mw-page-title-main">Executable</span> A file that causes a computer to follow indicated instructions

In computer science, executable code, an executable file, or an executable program, sometimes simply referred to as an executable or binary, causes a computer "to perform indicated tasks according to encoded instructions", as opposed to a data file that must be interpreted (parsed) by an interpreter to be functional.

An object file is a file that contains machine code or bytecode, as well as other data and metadata, generated by a compiler or assembler from source code during the compilation or assembly process. The machine code that is generated is known as object code.

Execution in computer and software engineering is the process by which a computer or virtual machine interprets and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a "fetch–decode–execute" cycle for each instruction done by the control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.

In computing, position-independent code (PIC) or position-independent executable (PIE) is a body of machine code that executes properly regardless of its memory address. PIC is commonly used for shared libraries, so that the same library code can be loaded at a location in each program's address space where it does not overlap with other memory in use by, for example, other shared libraries. PIC was also used on older computer systems that lacked an MMU, so that the operating system could keep applications away from each other even within the single address space of an MMU-less system.

The Microsoft Macro Assembler (MASM) is an x86 assembler that uses the Intel syntax for MS-DOS and Microsoft Windows. Beginning with MASM 8.0, there are two versions of the assembler: One for 16-bit & 32-bit assembly sources, and another (ML64) for 64-bit sources only.

Relocation is the process of assigning load addresses for position-dependent code and data of a program and adjusting the code and data to reflect the assigned addresses. Prior to the advent of multiprocess systems, and still in many embedded systems, the addresses for objects are absolute starting at a known location, often zero. Since multiprocessing systems dynamically link and switch between programs it became necessary to be able to relocate objects using position-independent code. A linker usually performs relocation in conjunction with symbol resolution, the process of searching files and libraries to replace symbolic references or names of libraries with actual usable addresses in memory before running a program.

IP Pascal is an implementation of the Pascal programming language using the IP portability platform, a multiple machine, operating system and language implementation system. It implements the language "Pascaline", and has passed the Pascal Validation Suite.

In computing, a dynamic linker is the part of an operating system that loads and links the shared libraries needed by an executable when it is executed, by copying the content of libraries from persistent storage to RAM, filling jump tables and relocating pointers. The specific operating system and executable format determine how the dynamic linker functions and how it is implemented.

A debug symbol is a special kind of symbol that attaches additional information to the symbol table of an object file, such as a shared library or an executable. This information allows a symbolic debugger to gain access to information from the source code of the binary, such as the names of identifiers, including variables and routines.

A translator or programming language processor is a computer program that converts the programming instructions written in human convenient form into machine language codes that the computers understand and process. It is a generic term that can refer to a compiler, assembler, or interpreter—anything that converts code from one computer language into another. These include translations between high-level and human-readable computer languages such as C++ and Java, intermediate-level languages such as Java bytecode, low-level languages such as the assembly language and machine code, and between similar levels of language on different computing platforms, as well as from any of these to any other of these. Software and hardware represent different levels of abstraction in computing. Software is typically written in high-level programming languages, which are easier for humans to understand and manipulate, while hardware implementations involve low-level descriptions of physical components and their interconnections. Translator computing facilitates the conversion between these abstraction levels. Overall, translator computing plays a crucial role in bridging the gap between software and hardware implementations, enabling developers to leverage the strengths of each platform and optimize performance, power efficiency, and other metrics according to the specific requirements of the application.

Charm is a computer programming language devised in the early 1990s with similarities to the RTL/2, Pascal and C languages in addition to containing some unique features of its own. The Charm language is defined by a context-free grammar amenable to being processed by recursive descent parser as described in seminal books on compiler design.

The OS/360 Object File Format is the standard object module file format for the IBM DOS/360, OS/360 and VM/370, Univac VS/9, and Fujitsu BS2000 mainframe operating systems. In the 1990s, the format was given an extension with the XSD-type record for the MVS Operating System to support longer module names in the C Programming Language. This format is still in use by the z/VSE operating system. In contrast, it has been superseded by the GOFF file format on the MVS Operating System and on the z/VM Operating System. Since the MVS and z/VM loaders will still handle this older format, some compilers have chosen to continue to produce this format instead of the newer GOFF format.

References

  1. "Compiler". TechTarget. Retrieved 1 September 2011. Traditionally, the output of the compilation has been called object code or sometimes an object module.
  2. Aho, Alfred V.; Sethi, Ravi; Ullman, Jeffrey C. (1986). "10 Code Optimization". Compilers: principles, techniques, and tools. Computer Science. Mark S. Dalton. p.  704. ISBN   0-201-10194-7.
  3. Fischer, Charles N. "What do compilers produce?" (PDF). University of Wisconsin Madison. Retrieved 2 April 2024.