Octal game

Last updated

The octal games are a class of two-player games that involve removing tokens (game pieces or stones) from heaps of tokens. They have been studied in combinatorial game theory as a generalization of Nim, Kayles, and similar games. [1] [2]

Contents

Octal games are impartial meaning that every move available to one player is also available to the other player. They differ from each other in the numbers of tokens that may be removed in a single move, and (depending on this number) whether it is allowed to remove an entire heap, reduce the size of a heap, or split a heap into two heaps. These rule variations may be described compactly by a coding system using octal numerals.

Game specification

An octal game is played with tokens divided into heaps. Two players take turns moving until no moves are possible. Every move consists of selecting just one of the heaps, and either

Heaps other than the selected heap remain unchanged. The last player to move wins in normal play. The game may also be played in misère play , in which the last player to move loses.

Games played with heaps in this fashion, in which the allowed moves for each heap are determined by the original heap's size, are called Taking and Breaking games in the literature. [1] Octal games are a subset of the taking and breaking games in which the allowed moves are determined by the number of tokens removed from the heap.

The octal code for a game is specified as

0 . d1d2d3d4 …,

where the octal digit dn specifies whether the player is allowed to leave zero, one, or two heaps after removing n tokens from a heap. The digit dn is the sum of

Zero tokens are not counted as a heap. Thus the digit dn is odd if a heap of n tokens may be removed entirely, and even otherwise. The specification of one-heap results in dn applies to removing n tokens from a heap of more than n. The two-heap results in dn apply to removing n tokens from a heap of at least n+2, and separating the remainder into two nonempty heaps.

Octal games may allow splitting a heap into two parts without removing any tokens, by use of the digit 4 to the left of the decimal point. This is similar to the move in Grundy's game, which is to split a heap into two unequal parts. Standard octal game notation, however, does not have the power to express the constraint of unequal parts.

Octal games with only a finite number of non-zero digits are called finite octal games.

Particular octal games

Nim

The most fundamental game in combinatorial game theory is Nim, in which any number of tokens may be removed from a heap, leaving zero or one heaps behind. The octal code for Nim is 0.333…, appearing in the published literature as

,

to signify the repeating part as in a repeating decimal. It is important to realize, however, that the repeating part does not play the same role as in octal fractions, in that the games

and

are not identical, despite their equality as octal fractions.

Kayles

The game Kayles is usually visualized as played with a row of n pins, but may be modeled by a heap of n counters. One is allowed to remove one or two tokens from a heap and arrange the remainder into zero, one, or two heaps. The octal code for Kayles is 0.77 .

Dawson's Chess

Dawson's Chess is a game arising from a chess puzzle posed by Thomas Rayner Dawson in Caissa's Wild Roses, 1938. [3] The puzzle was posed as involving opposed rows of pawns separated by a single rank. Although the puzzle is not posed as an impartial game, the assumption that captures are mandatory implies that a player's moving in any file results only in the removal of that file and its neighbors (if any) from further consideration, with the opposite player to move. Modeling this as a heap of n tokens, a player may remove an entire heap of one, two, or three tokens, may reduce any heap by two or three tokens, or may split a heap into two parts after removing three tokens. Dawson's Chess is thus represented by the octal code 0.137.

Dawson's Kayles

In the game 0.07, called Dawson's Kayles, a move is to remove exactly two tokens from a heap and to distribute the remainder into zero, one, or two heaps. Dawson's Kayles is named for its (non-obvious) similarity to Dawson's Chess, in that a Dawson's Kayles heap of n+1 tokens acts exactly like a Dawson's Chess heap of n tokens. Dawson's Kayles is said to be a first cousin of Dawson's Chess.

Generalization to other bases

Octal games like Nim, in which every move transforms a heap into zero or one heaps, are called quaternary games because the only digits that appear are 0, 1, 2, and 3. The octal notation may also be extended to include hexadecimal games, in which digits permit division of a heap into three parts. In fact, arbitrarily large bases are possible. The analysis of quaternary, octal, and hexadecimal games show that these classes of games are markedly different from each other, [1] and the behavior of larger bases has not received as much scrutiny.

Nim-sequence

The Sprague–Grundy theorem implies that a heap of size n is equivalent to a nim heap of a given size, usually noted G(n). The analysis of an octal game then consists in finding the sequence of the nim-values for heaps of increasing size. This sequence G(0), G(1), G(2) ... is usually called the nim-sequence of the game.

All finite octal games analyzed so far have shown a nim-sequence ultimately periodic, and whether all finite octal games are ultimately periodic is an open question. It is listed by Richard Guy as an important problem in the field of combinatorial games. [4]

Computation records

A complete analysis of an octal game results in finding its period and preperiod of its nim-sequence. It is shown in Winning Ways for your Mathematical Plays that only a finite number of values of the nim-sequence is needed to prove that a finite octal game is periodic, which opened the door to computations with computers.

Octal games with at most 3 octal-digits have been analyzed through the years. There are 79 non-trivial octal games, among which 14 have been solved:

There remain 63 of these games, despite the computation of millions of nim-values by Achim Flammenkamp. [5]

Related Research Articles

<span class="mw-page-title-main">Decimal</span> Number in base-10 numeral system

The decimal numeral system is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.

<span class="mw-page-title-main">Nim</span> Game of strategy

Nim is a mathematical game of strategy in which two players take turns removing objects from distinct heaps or piles. On each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap or pile. Depending on the version being played, the goal of the game is either to avoid taking the last object or to take the last object.

In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented as a natural number, the size of the heap in its equivalent game of nim, as an ordinal number in the infinite generalization, or alternatively as a nimber, the value of that one-heap game in an algebraic system whose addition operation combines multiple heaps to form a single equivalent heap in nim.

In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players.

<span class="mw-page-title-main">Parity (mathematics)</span> Property of being an even or odd number

In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not. For example, −4, 0, 82 are even because

In mathematics, the nimbers, also called Grundy numbers, are introduced in combinatorial game theory, where they are defined as the values of heaps in the game Nim. The nimbers are the ordinal numbers endowed with nimber addition and nimber multiplication, which are distinct from ordinal addition and ordinal multiplication.

Winning Ways for Your Mathematical Plays by Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy is a compendium of information on mathematical games. It was first published in 1982 in two volumes.

<span class="mw-page-title-main">Combinatorial game theory</span> Branch of game theory about two-player sequential games with perfect information

Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players. However, as mathematical techniques advance, the types of game that can be mathematically analyzed expands, thus the boundaries of the field are ever changing. Scholars will generally define what they mean by a "game" at the beginning of a paper, and these definitions often vary as they are specific to the game being analyzed and are not meant to represent the entire scope of the field.

In combinatorial game theory, star, written as or , is the value given to the game where both players have only the option of moving to the zero game. Star may also be denoted as the surreal form {0|0}. This game is an unconditional first-player win.

In combinatorial game theory, the zero game is the game where neither player has any legal options. Therefore, under the normal play convention, the first player automatically loses, and it is a second-player win. The zero game has a Sprague–Grundy value of zero. The combinatorial notation of the zero game is: { | }.

Hexapawn is a deterministic two-player game invented by Martin Gardner. It is played on a rectangular board of variable size, for example on a 3×3 board or on a regular chessboard. On a board of size n×m, each player begins with m pawns, one for each square in the row closest to them. The goal of each player is to either advance a pawn to the opposite end of the board or leave the other player with no legal moves, either by stalemate or by having all of their pieces captured.

<span class="mw-page-title-main">Hackenbush</span> Mathematical pen-and-paper game

Hackenbush is a two-player game invented by mathematician John Horton Conway. It may be played on any configuration of colored line segments connected to one another by their endpoints and to a "ground" line.

Subtract-a-square is a two-player mathematical subtraction game. It is played by two people with a pile of coins between them. The players take turns removing coins from the pile, always removing a non-zero square number of coins. The game is usually played as a normal play game, which means that the player who removes the last coin wins. It is an impartial game, meaning that the set of moves available from any position does not depend on whose turn it is. Solomon W. Golomb credits the invention of this game to Richard A. Epstein.

<span class="mw-page-title-main">Grundy's game</span> Mathematical game

Grundy's game is a two-player mathematical game of strategy. The starting configuration is a single heap of objects, and the two players take turn splitting a single heap into two heaps of different sizes. The game ends when only heaps of size two and smaller remain, none of which can be split unequally. The game is usually played as a normal play game, which means that the last person who can make an allowed move wins.

<span class="mw-page-title-main">Kayles</span> Mathematical game

Kayles is a simple impartial game in combinatorial game theory, invented by Henry Dudeney in 1908. Given a row of imagined bowling pins, players take turns to knock out either one pin, or two adjacent pins, until all the pins are gone. Using the notation of octal games, Kayles is denoted 0.77.

In the mathematical theory of games, genus theory in impartial games is a theory by which some games played under the misère play convention can be analysed, to predict the outcome class of games.

In combinatorial game theory, and particularly in the theory of impartial games in misère play, an indistinguishability quotient is a commutative monoid that generalizes and localizes the Sprague–Grundy theorem for a specific game's rule set.

<span class="mw-page-title-main">First-player and second-player win</span>

In combinatorial game theory, a two-player deterministic perfect information turn-based game is a first-player-win if with perfect play the first player to move can always force a win. Similarly, a game is second-player-win if with perfect play the second player to move can always force a win. With perfect play, if neither side can force a win, the game is a draw.

In combinatorial game theory, poset games are mathematical games of strategy, generalizing many well-known games such as Nim and Chomp. In such games, two players start with a poset, and take turns choosing one point in the poset, removing it and all points that are greater. The player who is left with no point to choose, loses.

In combinatorial game theory, a subtraction game is an abstract strategy game whose state can be represented by a natural number or vector of numbers and in which the allowed moves reduce these numbers. Often, the moves of the game allow any number to be reduced by subtracting a value from a specified subtraction set, and different subtraction games vary in their subtraction sets. These games also vary in whether the last player to move wins or loses. Another winning convention that has also been used is that a player who moves to a position with all numbers zero wins, but that any other position with no moves possible is a draw.

References

  1. 1 2 3 4 5 6 Berlekamp, Elwyn R.; John H. Conway; Richard K. Guy (1982). Winning Ways for your Mathematical Plays . Vol. 1. Academic Press. ISBN   0-12-091101-9. Revised and reprinted as
    Winning Ways for your Mathematical Plays (2nd ed.) . A K Peters Ltd. 2004. ISBN   1-56881-130-6.
  2. Conway, John Horton (1976). On numbers and games . Academic Press. ISBN   0-12-186350-6. Revised and reprinted as
    (2000). On numbers and games . A K Peters Ltd. ISBN   1-56881-127-6.
  3. Dawson, Thomas Rayner (1973). Five Classics of Fairy Chess. Dover Publications.
  4. Richard K. Guy, Unsolved problems in Combinatorial Games, Games of No Chance, 1996
  5. 1 2 Achim Flammenkamp, Octal games