Olpasiran

Last updated

Olpasiran (AMG890) is an experimental antisense therapy designed to lower the level of lipoprotein(a), which is believed to be a causal factor in the development of cardiovascular disease. The drug is developed by Amgen. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Cholesterol</span> Sterol biosynthesized by all animal cells

Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.

High-density lipoprotein (HDL) is one of the five major groups of lipoproteins. Lipoproteins are complex particles composed of multiple proteins which transport all fat molecules (lipids) around the body within the water outside cells. They are typically composed of 80–100 proteins per particle. HDL particles enlarge while circulating in the blood, aggregating more fat molecules and transporting up to hundreds of fat molecules per particle.

<span class="mw-page-title-main">Low-density lipoprotein</span> One of the five major groups of lipoprotein

Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein that transport all fat molecules around the body in extracellular water. These groups, from least dense to most dense, are chylomicrons, very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL). LDL delivers fat molecules to cells. LDL is involved in atherosclerosis, a process in which it is oxidized within the walls of arteries.

<span class="mw-page-title-main">Atherosclerosis</span> Form of arteriosclerosis

Atherosclerosis is a pattern of the disease arteriosclerosis, characterized by development of abnormalities called lesions in walls of arteries. These lesions may lead to narrowing of the arteries' walls due to buildup of atheromatous plaques. At onset there are usually no symptoms, but if they develop, symptoms generally begin around middle age. In severe cases, it can result in coronary artery disease, stroke, peripheral artery disease, or kidney disorders, depending on which body parts(s) the affected arteries are located in the body.

<span class="mw-page-title-main">Hypercholesterolemia</span> High levels of cholesterol in the blood

Hypercholesterolemia, also called high cholesterol, is the presence of high levels of cholesterol in the blood. It is a form of hyperlipidemia, hyperlipoproteinemia, and dyslipidemia.

Dyslipidemia is a metabolic disorder characterized by abnormally high or low amounts of any or all lipids or lipoproteins in the blood. Dyslipidemia is a risk factor for the development of atherosclerotic cardiovascular diseases (ASCVD), which include coronary artery disease, cerebrovascular disease, and peripheral artery disease. Although dyslipidemia is a risk factor for ASCVD, abnormal levels don't mean that lipid lowering agents need to be started. Other factors, such as comorbid conditions and lifestyle in addition to dyslipidemia, is considered in a cardiovascular risk assessment. In developed countries, most dyslipidemias are hyperlipidemias; that is, an elevation of lipids in the blood. This is often due to diet and lifestyle. Prolonged elevation of insulin resistance can also lead to dyslipidemia. Likewise, increased levels of O-GlcNAc transferase (OGT) may cause dyslipidemia.

<span class="mw-page-title-main">Apolipoprotein</span> Proteins that bind lipids to transport them in body fluids

Apolipoproteins are proteins that bind lipids to form lipoproteins. They transport lipids in blood, cerebrospinal fluid and lymph.

<span class="mw-page-title-main">Apolipoprotein B</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B (ApoB) is a protein that in humans is encoded by the APOB gene. It is commonly used to detect risk of atherosclerotic cardiovascular disease.

<span class="mw-page-title-main">ApoA-I Milano</span>

Apolipoprotein A-I Milano is a naturally occurring mutated variant of the apolipoprotein A1 protein found in human HDL, the lipoprotein particle that carries cholesterol from tissues to the liver and is associated with protection against cardiovascular disease. ApoA-I Milano was first identified by Dr. Cesare Sirtori in Milan, who also demonstrated that its presence significantly reduced cardiovascular disease, even though it caused a reduction in HDL levels and an increase in triglyceride levels.

<span class="mw-page-title-main">Foam cell</span> Fat-laden M2 macrophages seen in atherosclerosis

Foam cells, also called lipid-laden macrophages, are a type of cell that contain cholesterol. These can form a plaque that can lead to atherosclerosis and trigger myocardial infarction and stroke.

<span class="mw-page-title-main">Lipoprotein(a)</span> Low-density lipoprotein containing apolipoprotein(a)

Lipoprotein(a) is a low-density lipoprotein variant containing a protein called apolipoprotein(a). Genetic and epidemiological studies have identified lipoprotein(a) as a risk factor for atherosclerosis and related diseases, such as coronary heart disease and stroke.

<span class="mw-page-title-main">Apolipoprotein C-III</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-III also known as apo-CIII, and apolipoprotein C3, is a protein that in humans is encoded by the APOC3 gene. Apo-CIII is secreted by the liver as well as the small intestine, and is found on triglyceride-rich lipoproteins such as chylomicrons, very low density lipoprotein (VLDL), and remnant cholesterol.

<span class="mw-page-title-main">APOA5</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-V is a protein that in humans is encoded by the APOA5 gene on chromosome 11. It is significantly expressed in liver. The protein encoded by this gene is an apolipoprotein and an important determinant of plasma triglyceride levels, a major risk factor for coronary artery disease. It is a component of several lipoprotein fractions including VLDL, HDL, chylomicrons. It is believed that apoA-V affects lipoprotein metabolism by interacting with LDL-R gene family receptors. Considering its association with lipoprotein levels, APOA5 is implicated in metabolic syndrome. The APOA5 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">LRP1</span> Mammalian protein found in Homo sapiens

Low density lipoprotein receptor-related protein 1 (LRP1), also known as alpha-2-macroglobulin receptor (A2MR), apolipoprotein E receptor (APOER) or cluster of differentiation 91 (CD91), is a protein forming a receptor found in the plasma membrane of cells involved in receptor-mediated endocytosis. In humans, the LRP1 protein is encoded by the LRP1 gene. LRP1 is also a key signalling protein and, thus, involved in various biological processes, such as lipoprotein metabolism and cell motility, and diseases, such as neurodegenerative diseases, atherosclerosis, and cancer.

<span class="mw-page-title-main">PCSK9</span> Mammalian protein found in humans

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme encoded by the PCSK9 gene in humans on chromosome 1. It is the 9th member of the proprotein convertase family of proteins that activate other proteins. Similar genes (orthologs) are found across many species. As with many proteins, PCSK9 is inactive when first synthesized, because a section of peptide chains blocks their activity; proprotein convertases remove that section to activate the enzyme. The PCSK9 gene also contains one of 27 loci associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">LRP5</span> Protein-coding gene in the species Homo sapiens

Low-density lipoprotein receptor-related protein 5 is a protein that in humans is encoded by the LRP5 gene. LRP5 is a key component of the LRP5/LRP6/Frizzled co-receptor group that is involved in canonical Wnt pathway. Mutations in LRP5 can lead to considerable changes in bone mass. A loss-of-function mutation causes osteoporosis pseudoglioma syndrome with a decrease in bone mass, while a gain-of-function mutation causes drastic increases in bone mass.

<span class="mw-page-title-main">Lipidology</span>

Lipidology is the scientific study of lipids. Lipids are a group of biological macromolecules that have a multitude of functions in the body. Clinical studies on lipid metabolism in the body have led to developments in therapeutic lipidology for disorders such as cardiovascular disease.

Suboptimal health status (SHS), or subhealth or sub-health(Chinese: 亚健康), can be defined as a state characterized by some disturbances in psychological behaviors or physical characteristics, or in some indices of medical examination, with no typical pathologic features. It is considered as a therapeutic working concept which defines an intermediate stage between health and disease, which is not quite either status. Human persons who are sub-healthy have any of a range of uncomfortable symptoms but without any obvious and diagnosable illnesses which can be identified through standard medical observation methods. This concept was first presented as "the third state" by the scholar of former Soviet Union, Berkman, in the mid-1980s. It is also interpreted as different terms like "intermediate state", "grey state" or "a general malaise". Sub-health is a term which is widely used by Chinese people, or in connection with traditional Chinese medicine (TCM).

Inclisiran, sold under the brand name Leqvio, is a medication used for the treatment of high low-density lipoprotein (LDL) cholesterol and for the treatment of people with atherosclerotic cardiovascular disease (ASCVD), ASCVD risk-equivalents, and heterozygous familial hypercholesterolemia (HeFH). It is a small interfering RNA (siRNA) that acts as an inhibitor of a proprotein convertase, specifically, inhibiting translation of the protein PCSK9.

Olezarsen is a drug designed to block the production of apolipoprotein C-III and lower its concentrations to treat people with familial hypercholesterolemia and hypertriglyceridemia.

References

  1. O’Donoghue, Michelle L.; Rosenson, Robert S.; Gencer, Baris; López, J. Antonio G.; Lepor, Norman E.; Baum, Seth J.; Stout, Elmer; Gaudet, Daniel; Knusel, Beat; Kuder, Julia F.; Ran, Xinhui; Murphy, Sabina A.; Wang, Huei; Wu, You; Kassahun, Helina; Sabatine, Marc S. (17 November 2022). "Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease". New England Journal of Medicine. 387 (20): 1855–1864. doi:10.1056/NEJMoa2211023.
  2. Koren, Michael J.; Moriarty, Patrick Maurice; Baum, Seth J.; Neutel, Joel; Hernandez-Illas, Martha; Weintraub, Howard S.; Florio, Monica; Kassahun, Helina; Melquist, Stacey; Varrieur, Tracy; Haldar, Saptarsi M.; Sohn, Winnie; Wang, Huei; Elliott-Davey, Mary; Rock, Brooke M.; Pei, Tao; Homann, Oliver; Hellawell, Jennifer; Watts, Gerald F. (January 2022). "Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a)". Nature Medicine. 28 (1): 96–103. doi:10.1038/s41591-021-01634-w. ISSN   1546-170X.