OpenLB is an object-oriented implementation of the lattice Boltzmann methods (LBM). It is the first implementation of a generic platform for LBM programming, which is shared with the open source community (GPLv2).[2] The code is written in C++ and is used by application programmers as well as developers, with the ability to implement custom models[3] OpenLB supports complex data structures that allow simulations in complex geometries and parallel execution using MPI, OpenMP and CUDA on high-performance computers. The source code uses the concepts of interfaces and templates, so that efficient, direct and intuitive implementations of the LBM become possible.[4] The efficiency and scalability has been checked and proved by code reviews.[5] A user manual and a source code documentation by DoxyGen are available on the project page.
The automatic grid generation can assume both an STL file as well as primitive geometries. For the geometry, a uniform and rectangular grid is created which encloses the entire space of the geometry. The superfluous grid cells are then removed and the remaining cuboids are shrunk to fit the given geometry. Finally, the grid is distributed to different threads or processors for the parallel execution of the simulation. The boundary conditions and start values can be set using material numbers.
Literature
Krause, Mathias J. and Latt, Jonas and Heuveline, Vincent. "Towards a hybrid parallelization of lattice Boltzmann methods." Computers & Mathematics with Applications 58.5 (2009): 1071–1080.
Heuveline, Vincent, and Mathias J. Krause. "OpenLB: towards an efficient parallel open source library for lattice Boltzmann fluid flow simulations." International Workshop on State-of-the-Art in Scientific and Parallel Computing. PARA. Vol. 9. 2010.
Krause, Mathias J., Thomas Gengenbach, and Vincent Heuveline. "Hybrid parallel simulations of fluid flows in complex geometries: Application to the human lungs." European Conference on Parallel Processing. Springer Berlin Heidelberg, 2010.
Krause, Mathias J. "Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance computers: application to the human respiratory system." Karlsruhe Institute of Technology, KIT (2010).
Trunk, Robin, et al. "Inertial dilute particulate fluid flow simulations with an Euler–Euler lattice Boltzmann method." Journal of Computational Science (2016).
Mink, Albert, et al. "A 3D Lattice Boltzmann method for light simulation in participating media." Journal of Computational Science (2016).
↑Heuveline, Vincent, and Mathias J. Krause. "OpenLB: towards an efficient parallel open source library for lattice Boltzmann fluid flow simulations." International Workshop on State-of-the-Art in Scientific and Parallel Computing. PARA. Vol. 9. 2010.
↑Fietz, Jonas; Krause, MathiasJ.; Schulz, Christian; Sanders, Peter; Heuveline, Vincent (1 January 2012). "Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries". Euro-Par 2012 Parallel Processing. Lecture Notes in Computer Science. Vol.7484. pp.818–829. doi:10.1007/978-3-642-32820-6_81. ISBN978-3-642-32819-0.
123Krause, Mathias J., Thomas Gengenbach, and Vincent Heuveline. "Hybrid parallel simulations of fluid flows in complex geometries: Application to the human lungs." European Conference on Parallel Processing. Springer Berlin Heidelberg, 2010.
↑Nathen, Patrick, et al. "An extension of the Lattice Boltzmann Method for simulating turbulent flows around rotating geometries of arbitrary shape." 21st AIAA Computational Fluid Dynamics Conference. 2013.
↑Mink, Albert, et al. "A 3D Lattice Boltzmann method for light stimulation in participating media." Journal of Computational Science (2016).
↑Krause, Mathias J. "Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance computers: application to the human respiratory system." Karlsruhe Institute of Technology, KIT (2010).
↑Trunk, Robin, et al. "Inertial dilute particulate fluid flow simulations with an Euler–Euler lattice Boltzmann method." Journal of Computational Science (2016).
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.