This article's tone or style may not reflect the encyclopedic tone used on Wikipedia.(December 2024) |
Operational analytical processing, more popularly known as operational analytics, is a subset of data analytics that focuses on improving the operational nature of a business or entity.
The main characteristic that distinguishes operational analytics from other types of analytics is that it is analytics on the fly, [1] which means that signals emanating from various parts of a business are processed in real-time to feed back into instant decision-making for the business. This is sometimes referred to as "continuous analytics," which is another way to emphasize the continuous digital feedback loop that can exist from one part of a business to its other parts.
The rapid digital transformation of many businesses means that an increasing number of business signals are being recorded and stored in digital form. Businesses are using these signals to improve their efficiency, improve their performance and provide better experiences to their users and customers. A Forrester Report [2] details how digitization of a business is impacting its customer experiences by leveraging data. Operational analytics allows you to process various types of information from different sources and then decide what to do next: what action to take, whom to talk to, what immediate plans to make. Gartner defines this as Continuous Intelligence [3] in a research report and goes on to describe this as a design pattern in which real-time analytics are integrated within a business operation, processing current and historical data to prescribe actions in response to events. Andreessen Horowitz [4] [5] describes this as ...more and more decisions are automated away altogether—think of Amazon continually updating prices for its products throughout the day. This form of analytics has become popular with the digitization trend in almost all industry verticals, because it is digitization that furnishes the data needed for operational decision-making.
A few examples of operational analytics include... a product manager who looks at product-usage logs to determine which features of the product are liked by its users, which features slow them down, and which features are disliked by its users. The product manager can gather all these answers by querying data that records usage patterns from the product's user base; and he or she can immediately feed that information back to make the product better. Similarly, in the case of marketing analytic in the pre-digitized world, a marketing manager would organize a few focus groups, try out a few experiments based on their own creativity and then implement them. Depending on the results of experimentation, they would then decide what to do next. An experiment may take weeks or months. In the digitized world, there is the "marketing engineer," a person who is well-versed in using data systems. These marketing engineers can run multiple experiments at once, gather results from experiments in the form of data, terminate the ineffective experiments and nurture the ones that work, all through the use of data-based software systems. The more experiments they can run and the quicker the turnaround times of results, the better their effectiveness in marketing their product.
An MIT Technology Review article [6] describes how a ride-sharing application uses algorithms for real-time monitoring of traffic and trip times to balance demand and supply for ride sourcing—and to adjust fees accordingly and rapidly. The use of operations analytics is not confined to the field of information technology. Data from business intelligence, finance, science, weather, and even current events are combined and then analyze together to extract valuable insight from it, and this in turn, drives quick decision making in almost every conceivable use. A metrics collection system like Scuba [7] is an operational analytics system because it is used extensively for interactive, ad hoc, analysis queries that run in under a second over live data.
The definition of an operational analytics processing engine (OPAP) [8] can be expressed in the form of the following six propositions:
Operational Analytics is a subset of the broader set of processes that characterizes OLAP (online analytical processing). As such, it inherits the large data sizes and complex queries that OLAP systems typically has to handle. However, the characteristics that uniquely identify operational analytics is the requirement for quick predictions based on most recent signals. This means that the data latency and query latency are very small. For example, operational analytics applied to real time business processes specify that data latency be zero. It also means that queries should be fast and finish at interactive speeds. Because these decisions are taken at a micro-level and are very personalized [9] to each individual entity, operational analytics processing is characterized by how easy it is to deliver personalized recommendations using such a system.
Customer relationship management (CRM) is a process in which a business or another organization administers its interactions with customers, typically using data analysis to study large amounts of information.
In computing, a data warehouse, also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. Data warehouses are central repositories of data integrated from disparate sources. They store current and historical data organized so as to make it easy to create reports, query and get insights from the data. Unlike databases, they are intended to be used by analysts and managers to help make organizational decisions.
Business intelligence (BI) consists of strategies, methodologies, and technologies used by enterprises for data analysis and management of business information. Common functions of BI technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.
In computing, online analytical processing, or OLAP, is an approach to quickly answer multi-dimensional analytical (MDA) queries. The term OLAP was created as a slight modification of the traditional database term online transaction processing (OLTP). OLAP is part of the broader category of business intelligence, which also encompasses relational databases, report writing and data mining. Typical applications of OLAP include business reporting for sales, marketing, management reporting, business process management (BPM), budgeting and forecasting, financial reporting and similar areas, with new applications emerging, such as agriculture.
Essbase is a multidimensional database management system (MDBMS) that provides a platform upon which to build analytic applications. Essbase began as a product from Arbor Software, which merged with Hyperion Software in 1998. Oracle Corporation acquired Hyperion Solutions Corporation in 2007. Until late 2005 IBM also marketed an OEM version of Essbase as DB2 OLAP Server.
Online transaction processing (OLTP) is a type of database system used in transaction-oriented applications, such as many operational systems. "Online" refers to the fact that such systems are expected to respond to user requests and process them in real-time. The term is contrasted with online analytical processing (OLAP) which instead focuses on data analysis.
Business analytics (BA) refers to the skills, technologies, and practices for iterative exploration and investigation of past business performance to gain insight and drive business planning. Business analytics focuses on developing new insights and understanding of business performance based on data and statistical methods. In contrast, business intelligence traditionally focuses on using a consistent set of metrics to both measure past performance and guide business planning. In other words, business intelligence focusses on description, while business analytics focusses on prediction and prescription.
Artificial intelligence marketing (AIM) is a form of marketing that uses artificial intelligence concepts and models such as machine learning, Natural process Languages, and Bayesian Networks to achieve marketing goals. The main difference between AIM and traditional forms of marketing resides in the reasoning, which is performed by a computer algorithm rather than a human.
Panopticon Software was a multi-national data visualization software company specializing in monitoring and analysis of real-time data. The firm was headquartered in Stockholm, Sweden. It partnered with software companies, including SAP, Thomson Reuters, Kx Systems, and One Market Data (OneTick). The company's name is derived from the Greek: 'pan' for all, 'optic' for sight. The company name is derived from the word panopticon which is an architectural concept originally intended to facilitate surveillance of prisons.
The term is used for two different things:
Behavioral analytics is a recent advancement in business analytics that reveals new insights into the behavior of consumers on eCommerce platforms, online games, web and mobile applications, and Internet of Things (IoT). The rapid increase in the volume of raw event data generated by the digital world enables methods that go beyond demographics and other traditional metrics that tell us what kind of people took what actions in the past. Behavioral analysis focuses on understanding how consumers act and why, enabling predictions about how they are likely to act in the future. It enables marketers to make the right offers to consumer segments at the right time.
Platfora, Inc. is a big data analytics company based in San Mateo, California. The firm’s software works with the open-source software framework Apache Hadoop to assist with data analysis, data visualization, and sharing.
Marketing automation refers to software platforms and technologies designed for marketing departments and organizations automate repetitive tasks and consolidate multi-channel interactions, tracking and web analytics, lead scoring, campaign management and reporting into one system. It often integrates with customer relationship management (CRM) and customer data platform (CDP) software.
Hybrid transaction/analytical processing (HTAP) is a term created by Gartner Inc., an information technology research and advisory company, in its early 2014 research report Hybrid Transaction/Analytical Processing Will Foster Opportunities for Dramatic Business Innovation. As defined by Gartner:
Hybrid transaction/analytical processing (HTAP) is an emerging application architecture that "breaks the wall" between transaction processing and analytics. It enables more informed and "in business real time" decision making.
Azure Cosmos DB is a globally distributed, multi-model database service offered by Microsoft. It is designed to provide high availability, scalability, and low-latency access to data for modern applications. Unlike traditional relational databases, Cosmos DB is a NoSQL and vector database, which means it can handle unstructured, semi-structured, structured, and vector data types.
Embedded analytics enables organisations to integrate analytics capabilities into their own, often software as a service, applications, portals, or websites. This differs from embedded software and web analytics.
Quantifind, Inc. is a technology company that provides software as a service to discover, investigate, and report entity risk as an indicator of potential financial risk, financial crime, and money laundering. The software is used by financial institutions and government agencies.
ClickHouse is an open-source column-oriented DBMS for online analytical processing (OLAP) that allows users to generate analytical reports using SQL queries in real-time. ClickHouse Inc. is headquartered in the San Francisco Bay Area with the subsidiary, ClickHouse B.V., based in Amsterdam, Netherlands.
Augmented Analytics is an approach of data analytics that employs the use of machine learning and natural language processing to automate analysis processes normally done by a specialist or data scientist. The term was introduced in 2017 by Rita Sallam, Cindi Howson, and Carlie Idoine in a Gartner research paper.
Apache Pinot is a column-oriented, open-source, distributed data store written in Java. Pinot is designed to execute OLAP queries with low latency. It is suited in contexts where fast analytics, such as aggregations, are needed on immutable data, possibly, with real-time data ingestion. The name Pinot comes from the Pinot grape vines that are pressed into liquid that is used to produce a variety of different wines. The founders of the database chose the name as a metaphor for analyzing vast quantities of data from a variety of different file formats or streaming data sources.