Orbit portrait

Last updated

In mathematics, an orbit portrait is a combinatorial tool used in complex dynamics for understanding the behavior of one-complex dimensional quadratic maps.

Contents

In simple words one can say that it is :

Definition

Given a quadratic map

from the complex plane to itself

and a repelling or parabolic periodic orbit of , so that (where subscripts are taken 1 + modulo ), let be the set of angles whose corresponding external rays land at .

Then the set is called the orbit portrait of the periodic orbit.

All of the sets must have the same number of elements, which is called the valence of the portrait.

Examples

Julia set with external rays landing on period-3 orbit Julia-p9.png
Julia set with external rays landing on period-3 orbit
Julia set with period-two parabolic orbit. The associated orbit portrait has characteristic arc I = (22/63, 25/63) and valence v = 3 rays per orbit point. Parabolic julia set c = -1.125 + 0.21650635094611*i.png
Julia set with period-two parabolic orbit. The associated orbit portrait has characteristic arc I = (22/63, 25/63) and valence v = 3 rays per orbit point.

Parabolic or repelling orbit portrait

valence 2





valence 3

Valence is 3 so rays land on each orbit point.

3 external rays of period 3 cycle :
R
1
7
,
R
2
7
,
R
4
7
{\displaystyle {\mathcal {R}}_{\frac {1}{7}},{\mathcal {R}}_{\frac {2}{7}},{\mathcal {R}}_{\frac {4}{7}}\,}
, which land on fixed point
z
=
a
c
{\displaystyle z=\alpha _{c}\,} Julia set with 3 external rays.svg
3 external rays of period 3 cycle : , which land on fixed point

For complex quadratic polynomial with c= -0.03111+0.79111*i portrait of parabolic period 3 orbit is : [1]

Rays for above angles land on points of that orbit . Parameter c is a center of period 9 hyperbolic component of Mandelbrot set.

For parabolic julia set c = -1.125 + 0.21650635094611*i. It is a root point between period 2 and period 6 components of Mandelbrot set. Orbit portrait of period 2 orbit with valence 3 is : [2]

valence 4

Formal orbit portraits

Every orbit portrait has the following properties:

Any collection of subsets of the circle which satisfy these four properties above is called a formal orbit portrait. It is a theorem of John Milnor that every formal orbit portrait is realized by the actual orbit portrait of a periodic orbit of some quadratic one-complex-dimensional map. Orbit portraits contain dynamical information about how external rays and their landing points map in the plane, but formal orbit portraits are no more than combinatorial objects. Milnor's theorem states that, in truth, there is no distinction between the two.

Trivial orbit portraits

Orbit portrait where all of the sets have only a single element are called trivial, except for orbit portrait . An alternative definition is that an orbit portrait is nontrivial if it is maximal, which in this case means that there is no orbit portrait that strictly contains it (i.e. there does not exist an orbit portrait such that ). It is easy to see that every trivial formal orbit portrait is realized as the orbit portrait of some orbit of the map , since every external ray of this map lands, and they all land at distinct points of the Julia set. Trivial orbit portraits are pathological in some respects, and in the sequel we will refer only to nontrivial orbit portraits.

Arcs

In an orbit portrait , each is a finite subset of the circle , so each divides the circle into a number of disjoint intervals, called complementary arcs based at the point . The length of each interval is referred to as its angular width. Each has a unique largest arc based at it, which is called its critical arc. The critical arc always has length greater than

These arcs have the property that every arc based at , except for the critical arc, maps diffeomorphically to an arc based , and the critical arc covers every arc based at once, except for a single arc, which it covers twice. The arc that it covers twice is called the critical value arc for . This is not necessarily distinct from the critical arc.

When escapes to infinity under iteration of , or when is in the Julia set, then has a well-defined external angle. Call this angle . is in every critical value arc. Also, the two inverse images of under the doubling map ( and ) are both in every critical arc.

Among all of the critical value arcs for all of the 's, there is a unique smallest critical value arc , called the characteristic arc which is strictly contained within every other critical value arc. The characteristic arc is a complete invariant of an orbit portrait, in the sense that two orbit portraits are identical if and only if they have the same characteristic arc.

Sectors

Much as the rays landing on the orbit divide up the circle, they divide up the complex plane. For every point of the orbit, the external rays landing at divide the plane into open sets called sectors based at . Sectors are naturally identified the complementary arcs based at the same point. The angular width of a sector is defined as the length of its corresponding complementary arc. Sectors are called critical sectors or critical value sectors when the corresponding arcs are, respectively, critical arcs and critical value arcs. [4]

Sectors also have the interesting property that is in the critical sector of every point, and , the critical value of , is in the critical value sector.

Parameter wakes

Two parameter rays with angles and land at the same point of the Mandelbrot set in parameter space if and only if there exists an orbit portrait with the interval as its characteristic arc. For any orbit portrait let be the common landing point of the two external angles in parameter space corresponding to the characteristic arc of . These two parameter rays, along with their common landing point, split the parameter space into two open components. Let the component that does not contain the point be called the -wake and denoted as . A quadratic polynomial realizes the orbit portrait with a repelling orbit exactly when . is realized with a parabolic orbit only for the single value for about

Primitive and satellite orbit portraits

Other than the zero portrait, there are two types of orbit portraits: primitive and satellite. If is the valence of an orbit portrait and is the recurrent ray period, then these two types may be characterized as follows:

Generalizations

Orbit portraits turn out to be useful combinatorial objects in studying the connection between the dynamics and the parameter spaces of other families of maps as well. In particular, they have been used to study the patterns of all periodic dynamical rays landing on a periodic cycle of a unicritical anti-holomorphic polynomial. [5]

See also

Related Research Articles

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

Functional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In mathematical notation for numbers, a signed-digit representation is a positional numeral system with a set of signed digits used to encode the integers.

<span class="mw-page-title-main">Dyadic transformation</span> Doubling map on the unit interval

The dyadic transformation is the mapping

In general topology and related areas of mathematics, the final topology on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set. Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

<span class="mw-page-title-main">Misiurewicz point</span> Parameter in the Mandelbrot set

In mathematics, a Misiurewicz point is a parameter value in the Mandelbrot set and also in real quadratic maps of the interval for which the critical point is strictly pre-periodic. By analogy, the term Misiurewicz point is also used for parameters in a multibrot set where the unique critical point is strictly pre-periodic. This term makes less sense for maps in greater generality that have more than one free critical point because some critical points might be periodic and others not. These points are named after the Polish-American mathematician Michał Misiurewicz, who was the first to study them.

The filled-in Julia set of a polynomial is a Julia set and its interior, non-escaping set.

A complex quadratic polynomial is a quadratic polynomial whose coefficients and variable are complex numbers.

<span class="mw-page-title-main">Lie point symmetry</span>

Lie point symmetry is a concept in advanced mathematics. Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie group in order to study the solutions of ordinary differential equations (ODEs). He showed the following main property: the order of an ordinary differential equation can be reduced by one if it is invariant under one-parameter Lie group of point transformations. This observation unified and extended the available integration techniques. Lie devoted the remainder of his mathematical career to developing these continuous groups that have now an impact on many areas of mathematically based sciences. The applications of Lie groups to differential systems were mainly established by Lie and Emmy Noether, and then advocated by Élie Cartan.

In mathematics the Jacobian ideal or gradient ideal is the ideal generated by the Jacobian of a function or function germ. Let denote the ring of smooth functions in variables and a function in the ring. The Jacobian ideal of is

In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.

Stochastic Gronwall inequality is a generalization of Gronwall's inequality and has been used for proving the well-posedness of path-dependent stochastic differential equations with local monotonicity and coercivity assumption with respect to supremum norm.

References

  1. Flek, Ross; Keen, Linda (2010). "Boundaries of Bounded Fatou Components of Quadratic Maps" (PDF). Journal of Difference Equations and Applications. 16 (5–6): 555–572. doi:10.1080/10236190903205080. S2CID   54997658.
  2. Milnor, John W. (1999). "Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account". Preprint. arXiv: math/9905169 . Bibcode:1999math......5169M.
  3. Chaotic 1D maps by Evgeny Demidov
  4. Periodic orbits and external rays by Evgeny Demidov
  5. Mukherjee, Sabyasachi (2015). "Orbit portraits of unicritical antiholomorphic polynomials". Conformal Geometry and Dynamics. 19 (3): 35–50. arXiv: 1404.7193 . doi: 10.1090/S1088-4173-2015-00276-3 .