External ray

Last updated

An external ray is a curve that runs from infinity toward a Julia or Mandelbrot set. [1] Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.

Contents

External rays are used in complex analysis, particularly in complex dynamics and geometric function theory.

History

External rays were introduced in Douady and Hubbard's study of the Mandelbrot set

Types

Criteria for classification :

plane

External rays of (connected) Julia sets on dynamical plane are often called dynamic rays.

External rays of the Mandelbrot set (and similar one-dimensional connectedness loci) on parameter plane are called parameter rays.

bifurcation

Dynamic ray can be:


When the filled Julia set is connected, there are no branching external rays. When the Julia set is not connected then some external rays branch. [5]

stretching

Stretching rays were introduced by Branner and Hubbard: [6] [7]

"The notion of stretching rays is a generalization of that of external rays for the Mandelbrot set to higher degree polynomials." [8]

landing

Every rational parameter ray of the Mandelbrot set lands at a single parameter. [9] [10]

Maps

Polynomials

Dynamical plane = z-plane

External rays are associated to a compact, full, connected subset of the complex plane as :

External rays together with equipotential lines of Douady-Hubbard potential ( level sets) form a new polar coordinate system for exterior ( complement ) of .

In other words the external rays define vertical foliation which is orthogonal to horizontal foliation defined by the level sets of potential. [13]

Uniformization

Let be the conformal isomorphism from the complement (exterior) of the closed unit disk to the complement of the filled Julia set .

where denotes the extended complex plane. Let denote the Boettcher map . [14] is a uniformizing map of the basin of attraction of infinity, because it conjugates on the complement of the filled Julia set to on the complement of the unit disk:

and

A value is called the Boettcher coordinate for a point .

Formal definition of dynamic ray
Polar coordinate system and
ps
c
{\displaystyle \psi _{c}}
for
c
=
-
2
{\displaystyle c=-2} Erays.svg
Polar coordinate system and for

The external ray of angle noted as is:

  • the image under of straight lines
  • set of points of exterior of filled-in Julia set with the same external angle
Properties

The external ray for a periodic angle satisfies:

and its landing point [15] satisfies:

Parameter plane = c-plane

"Parameter rays are simply the curves that run perpendicular to the equipotential curves of the M-set." [16]

Uniformization
Boundary of Mandelbrot set as an image of unit circle under
Ps
M
{\displaystyle \Psi _{M}\,} Jung200.png
Boundary of Mandelbrot set as an image of unit circle under
Uniformization of complement (exterior) of Mandelbrot set Jung50e.png
Uniformization of complement (exterior) of Mandelbrot set

Let be the mapping from the complement (exterior) of the closed unit disk to the complement of the Mandelbrot set . [17]

and Boettcher map (function) , which is uniformizing map [18] of complement of Mandelbrot set, because it conjugates complement of the Mandelbrot set and the complement (exterior) of the closed unit disk

it can be normalized so that :

[19]

where :

denotes the extended complex plane

Jungreis function is the inverse of uniformizing map :

In the case of complex quadratic polynomial one can compute this map using Laurent series about infinity [20] [21]

where

Formal definition of parameter ray


The external ray of angle is:

  • the image under of straight lines
  • set of points of exterior of Mandelbrot set with the same external angle [22]
Definition of the Boettcher map

Douady and Hubbard define:

so external angle of point of parameter plane is equal to external angle of point of dynamical plane

External angle

Angle θ is named external angle ( argument ). [23]

Principal value of external angles are measured in turns modulo 1

1 turn = 360 degrees = 2 ×π radians

Compare different types of angles :

external angleinternal angleplain angle
parameter plane
dynamic plane
Computation of external argument
  • argument of Böttcher coordinate as an external argument [24]
  • kneading sequence as a binary expansion of external argument [25] [26] [27]

Transcendental maps

For transcendental maps ( for example exponential ) infinity is not a fixed point but an essential singularity and there is no Boettcher isomorphism. [28] [29]

Here dynamic ray is defined as a curve :

Images

Dynamic rays


Parameter rays

Mandelbrot set for complex quadratic polynomial with parameter rays of root points

Parameter space of the complex exponential family f(z)=exp(z)+c. Eight parameter rays landing at this parameter are drawn in black.

Exponential Parameter Space Detail PSP Rays.png

Programs that can draw external rays

See also

Related Research Articles

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

<span class="mw-page-title-main">Circle group</span> Lie group of complex numbers of unit modulus; topologically a circle

In mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers

<span class="mw-page-title-main">Cramér–Rao bound</span> Lower bound on variance of an estimator

In estimation theory and statistics, the Cramér–Rao bound (CRB) relates to estimation of a deterministic parameter. The result is named in honor of Harald Cramér and C. R. Rao, but has also been derived independently by Maurice Fréchet, Georges Darmois, and by Alexander Aitken and Harold Silverstone. It states that the precision of any unbiased estimator is at most the Fisher information; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance.

In mathematics and theoretical physics, a locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states.

In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators. The definition of M-estimators was motivated by robust statistics, which contributed new types of M-estimators. However, M-estimators are not inherently robust, as is clear from the fact that they include maximum likelihood estimators, which are in general not robust. The statistical procedure of evaluating an M-estimator on a data set is called M-estimation.

<span class="mw-page-title-main">Autoencoder</span> Neural network that learns efficient data encoding in an unsupervised manner

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data. An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation. The autoencoder learns an efficient representation (encoding) for a set of data, typically for dimensionality reduction.

In mathematics, an orbit portrait is a combinatorial tool used in complex dynamics for understanding the behavior of one-complex dimensional quadratic maps.

<span class="mw-page-title-main">Misiurewicz point</span> Parameter in the Mandelbrot set

In mathematics, a Misiurewicz point is a parameter value in the Mandelbrot set and also in real quadratic maps of the interval for which the critical point is strictly pre-periodic. By analogy, the term Misiurewicz point is also used for parameters in a multibrot set where the unique critical point is strictly pre-periodic. These points are named after the Polish-American mathematician Michał Misiurewicz, who was the first to study them.

The filled-in Julia set of a polynomial is a Julia set and its interior, non-escaping set

In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics. They occur naturally in Fourier analysis, probability theory, operator theory, complex function-theory, moment problems, integral equations, boundary-value problems for partial differential equations, machine learning, embedding problem, information theory, and other areas.

A complex quadratic polynomial is a quadratic polynomial whose coefficients and variable are complex numbers.

<span class="mw-page-title-main">Sectrix of Maclaurin</span> Curve traced by the crossing of two lines revolving about poles

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin, which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If is a random variate in the interval with probability density function (PDF) , then is a circular variable distributed according to the wrapped distribution and is an angular variable in the interval distributed according to the wrapped distribution .

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.

References

  1. J. Kiwi : Rational rays and critical portraits of complex polynomials. Ph. D. Thesis SUNY at Stony Brook (1997); IMS Preprint #1997/15. Archived 2004-11-05 at the Wayback Machine
  2. Inou, Hiroyuki; Mukherjee, Sabyasachi (2016). "Non-landing parameter rays of the multicorns". Inventiones Mathematicae. 204 (3): 869–893. arXiv: 1406.3428 . Bibcode:2016InMat.204..869I. doi:10.1007/s00222-015-0627-3. S2CID   253746781.
  3. Atela, Pau (1992). "Bifurcations of dynamic rays in complex polynomials of degree two". Ergodic Theory and Dynamical Systems. 12 (3): 401–423. doi:10.1017/S0143385700006854. S2CID   123478692.
  4. Petersen, Carsten L.; Zakeri, Saeed (2020). "Periodic Points and Smooth Rays". arXiv: 2009.02788 [math.DS].
  5. Holomorphic Dynamics: On Accumulation of Stretching Rays by Pia B.N. Willumsen, see page 12
  6. The iteration of cubic polynomials Part I : The global topology of parameter by BODIL BRANNER and JOHN H. HUBBARD
  7. Stretching rays for cubic polynomials by Pascale Roesch
  8. Komori, Yohei; Nakane, Shizuo (2004). "Landing property of stretching rays for real cubic polynomials" (PDF). Conformal Geometry and Dynamics. 8 (4): 87–114. Bibcode:2004CGDAM...8...87K. doi:10.1090/s1088-4173-04-00102-x.
  9. A. Douady, J. Hubbard: Etude dynamique des polynˆomes complexes. Publications math´ematiques d’Orsay 84-02 (1984) (premi`ere partie) and 85-04 (1985) (deuxi`eme partie).
  10. Schleicher, Dierk (1997). "Rational parameter rays of the Mandelbrot set". arXiv: math/9711213 .
  11. Video : The beauty and complexity of the Mandelbrot set by John Hubbard ( see part 3 )
  12. Yunping Jing : Local connectivity of the Mandelbrot set at certain infinitely renormalizable points Complex Dynamics and Related Topics, New Studies in Advanced Mathematics, 2004, The International Press, 236-264
  13. POLYNOMIAL BASINS OF INFINITY LAURA DEMARCO AND KEVIN M. PILGRIM
  14. How to draw external rays by Wolf Jung
  15. Tessellation and Lyubich-Minsky laminations associated with quadratic maps I: Pinching semiconjugacies Tomoki Kawahira Archived 2016-03-03 at the Wayback Machine
  16. Douady Hubbard Parameter Rays by Linas Vepstas
  17. John H. Ewing, Glenn Schober, The area of the Mandelbrot Set
  18. Irwin Jungreis: The uniformization of the complement of the Mandelbrot set. Duke Math. J. Volume 52, Number 4 (1985), 935-938.
  19. Adrien Douady, John Hubbard, Etudes dynamique des polynomes complexes I & II, Publ. Math. Orsay. (1984-85) (The Orsay notes)
  20. Bielefeld, B.; Fisher, Y.; Vonhaeseler, F. (1993). "Computing the Laurent Series of the Map Ψ: C − D → C − M". Advances in Applied Mathematics. 14: 25–38. doi: 10.1006/aama.1993.1002 .
  21. Weisstein, Eric W. "Mandelbrot Set." From MathWorld--A Wolfram Web Resource
  22. An algorithm to draw external rays of the Mandelbrot set by Tomoki Kawahira
  23. http://www.mrob.com/pub/muency/externalangle.html External angle at Mu-ENCY (the Encyclopedia of the Mandelbrot Set) by Robert Munafo
  24. Computation of the external argument by Wolf Jung
  25. A. DOUADY, Algorithms for computing angles in the Mandelbrot set (Chaotic Dynamics and Fractals, ed. Barnsley and Demko, Acad. Press, 1986, pp. 155-168).
  26. Adrien Douady, John H. Hubbard: Exploring the Mandelbrot set. The Orsay Notes. page 58
  27. Exploding the Dark Heart of Chaos by Chris King from Mathematics Department of University of Auckland
  28. Topological Dynamics of Entire Functions by Helena Mihaljevic-Brandt
  29. Dynamic rays of entire functions and their landing behaviour by Helena Mihaljevic-Brandt