Orbital tuning

Last updated

Orbital tuning refers to the process of adjusting the time scale of a paleoenvironmental proxy record record so that the observed fluctuations correspond to the Milankovitch cycles in the Earth's orbital motion. [1] This is typically done to correct for dating uncertainty or in cases where dating is not possible, such as beyond the range of radiocarbon dating. [2]

Contents

Description

Changes in the Earth's orbit affect the amount and distribution of sunlight the Earth and certian parts of the Earth receives. [1] Such changes are expected to introduce periodic climate changes on a time scale of 20-100 kyr. Long records of sedimentation or climate should record such variations. However such records often have poorly constrained age scales. As a result, scientists will sometimes adjust the timing of the features in their samples to match the predictions of orbital theory in the hopes of improving the accuracy of their data. [1]

Methods and Uses

Orbital tuning is done by adjusting the timescale of a paleoclimate record to match variations in an insolated record. These small adjustments synchronizes the paleoclimate proxy record to that of orbital cycles. [3] If they are not, scientists are able to adjust one or more points to have these curves better correlate. [4] [5] At long timescales, orbitally forced changes in insolation are known to have a strong signal on climates and ecosystems, so orbital tuning is often an attempt to align proxy records with a known driver (insolation). [3]

Orbital tuning may also be used in cases where changes in sedimentation rate or preservation may cause gaps or hiatuses in a record that may complicate the interpretation of proxy records. For example, disturbances, ecological changes, varying precipitation levels, and other processes can cause shifts in sedimentation or a loss of sediments, and orbital tuning has been used to improve sediment chronologies or recapture missing portions of sediment records that have been lost or affected. [4] Orbital tuning is often used as a countermeasure to effects such as the mixing of top layer sediments by biotic interactions and/or other disturbances to samples. Methods have been developed to support results adjusted by orbital tuning such as radiometric data and more. Orbital tuning can be done to a whole sample but can also be done in short segments. Using it in short segments can greatly reduce the risk of manipulating the data. [2]

Criticism

Criticisms have been raised against orbital tuning and often this tool needs multiple factors to validate its conclusions. [2] When tuning variations in sediment deposit rates are not always because of orbital signals. Orbital tuning can often get these effects attributed to them. Due to this orbital tuning is used as needed over shorter time spans to not produce "overtuning" of a sample. Overturning refers to when a specific record uses too much orbital tuning and all of the data shown supports synchronous changes because it was tuned to match that specific time scale. [5] However, "overtuning" can result in apparent features that have no basis in the real data, such as occurred with the original SPECMAP record. [1]

Related Research Articles

<span class="mw-page-title-main">Paleoclimatology</span> Study of changes in ancient climate

Paleoclimatology is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to understand natural variation and the evolution of the current climate.

<span class="mw-page-title-main">Milankovitch cycles</span> Global climate cycles

Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after the Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypothesized that variations in eccentricity, axial tilt, and precession combined to result in cyclical variations in the intra-annual and latitudinal distribution of solar radiation at the Earth's surface, and that this orbital forcing strongly influenced the Earth's climatic patterns.

<span class="mw-page-title-main">Proxy (climate)</span> Preserved physical characteristics allowing reconstruction of past climatic conditions

In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.

Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun. These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes. In this context, the term "forcing" signifies a physical process that affects the Earth's climate.

<span class="mw-page-title-main">Global temperature record</span> Fluctuations of the Earths temperature over time

The global temperature record shows the fluctuations of the temperature of the atmosphere and the oceans through various spans of time. There are numerous estimates of temperatures since the end of the Pleistocene glaciation, particularly during the current Holocene epoch. Some temperature information is available through geologic evidence, going back millions of years. More recently, information from ice cores covers the period from 800,000 years before the present time until now. A study of the paleoclimate covers the time period from 12,000 years ago to the present. Tree rings and measurements from ice cores can give evidence about the global temperature from 1,000-2,000 years before the present until now. The most detailed information exists since 1850, when methodical thermometer-based records began. Modifications on the Stevenson-type screen were made for uniform instrument measurements around 1880.

<span class="mw-page-title-main">Solar irradiance</span> Measurement of electromagnetic radiation

Solar irradiance is the power per unit area received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m2) in SI units.

<span class="mw-page-title-main">Marine isotope stages</span> Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data derived from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

Paleoceanography is the study of the history of the oceans in the geologic past with regard to circulation, chemistry, biology, geology and patterns of sedimentation and biological productivity. Paleoceanographic studies using environment models and different proxies enable the scientific community to assess the role of the oceanic processes in the global climate by the re-construction of past climate at various intervals. Paleoceanographic research is also intimately tied to paleoclimatology.

The environmental isotopes are a subset of isotopes, both stable and radioactive, which are the object of isotope geochemistry. They are primarily used as tracers to see how things move around within the ocean-atmosphere system, within terrestrial biomes, within the Earth's surface, and between these broad domains.

In geochemistry, paleoclimatology and paleoceanography δ18O or delta-O-18 is a measure of the deviation in ratio of stable isotopes oxygen-18 (18O) and oxygen-16 (16O). It is commonly used as a measure of the temperature of precipitation, as a measure of groundwater/mineral interactions, and as an indicator of processes that show isotopic fractionation, like methanogenesis. In paleosciences, 18O:16O data from corals, foraminifera and ice cores are used as a proxy for temperature.

<span class="mw-page-title-main">Cyclostratigraphy</span> Study of astronomically forced climate cycles within sedimentary successions

Cyclostratigraphy is a subdiscipline of stratigraphy that studies astronomically forced climate cycles within sedimentary successions.

<span class="mw-page-title-main">100,000-year problem</span> Discrepancy between past temperatures and the amount of incoming solar radiation

The 100,000-year problem of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over the past 800,000 years. Due to variations in the Earth's orbit, the amount of insolation varies with periods of around 21,000, 40,000, 100,000, and 400,000 years. Variations in the amount of incident solar energy drive changes in the climate of the Earth, and are recognised as a key factor in the timing of initiation and termination of glaciations.

<span class="mw-page-title-main">Magnetofossil</span> Fossils produced by magnetotactic bacteria

Magnetofossils are the fossil remains of magnetic particles produced by magnetotactic bacteria (magnetobacteria) and preserved in the geologic record. The oldest definitive magnetofossils formed of the mineral magnetite come from the Cretaceous chalk beds of southern England, while magnetofossil reports, not considered to be robust, extend on Earth to the 1.9-billion-year-old Gunflint Chert; they may include the four-billion-year-old Martian meteorite ALH84001.

<span class="mw-page-title-main">Maureen Raymo</span> American climate scientist and marine geologist

Maureen E. "Mo" Raymo is an American paleoclimatologist and marine geologist. She is the Co-Founding Dean Emerita of the Columbia Climate School and the G. Unger Vetlesen Professor of Earth & Environmental Sciences at Columbia University. From 2011 to 2022 she was also the Director of the LDEO Core Repository and until 2024 was the Founding Director of the LDEO Hudson River Field Station. From 2020 to 2023 she was first Interim Director then Director of Lamont-Doherty Earth Observatory, the first climate scientist and first female scientist to head the institution.

Environmental magnetism is the study of magnetism as it relates to the effects of climate, sediment transport, pollution and other environmental influences on magnetic minerals. It makes use of techniques from rock magnetism and magnetic mineralogy. The magnetic properties of minerals are used as proxies for environmental change in applications such as paleoclimate, paleoceanography, studies of the provenance of sediments, pollution and archeology. The main advantages of using magnetic measurements are that magnetic minerals are almost ubiquitous and magnetic measurements are quick and non-invasive.

North African climate cycles have a unique history that can be traced back millions of years. The cyclic climate pattern of the Sahara is characterized by significant shifts in the strength of the North African Monsoon. When the North African Monsoon is at its strongest, annual precipitation and consequently vegetation in the Sahara region increase, resulting in conditions commonly referred to as the "green Sahara". For a relatively weak North African Monsoon, the opposite is true, with decreased annual precipitation and less vegetation resulting in a phase of the Sahara climate cycle known as the "desert Sahara".

<span class="mw-page-title-main">Marine Isotope Stage 9</span>

Marine Isotope Stage 9 was an interglacial period that consisted of two interstadial and one stadial period. It is the final period of the Lower Paleolithic and lasted from 337,000 to 300,000 years ago according to Lisiecki and Raymo's LR04 Benthic Stack. It corresponds to the Purfleet Interglacial in Britain, the Holstein Interglacial in continental Europe, and the Pre-Illinoian in North America.

<span class="mw-page-title-main">Amelia E. Shevenell</span> American marine geologist

Amelia E. Shevenell is an American marine geologist who specializes in high-latitude paleoclimatology and paleoceanography. She is currently a Professor in the College of Marine Science at the University of South Florida. She has made notable contributions to understanding the history of the Antarctic ice sheets and published in high-impact journals and, as a result, was awarded full membership of Sigma Xi. She has a long record of participation in international ocean drilling programs and has served in leadership positions of these organizations. Shevenell served as the elected Geological Oceanography Council Member for The Oceanography Society (2019-2021).

<span class="mw-page-title-main">Paleohydrology</span> Study of hydrology over geological time

Paleohydrology, or palaeohydrology, is the scientific study of the movement, distribution, and quality of water on Earth during previous periods of its history. The discipline uses indirect evidence to infer changes in deposition rates, the existence of flooding, changes in sea levels, changes in groundwater levels and the erosion of rocks. It also deals with alterations in the floral and faunal assemblages which have come about in previous periods because of changes in hydrology.

Global paleoclimate indicators are the proxies sensitive to global paleoclimatic environment changes. They are mostly derived from marine sediments. Paleoclimate indicators derived from terrestrial sediments, on the other hand, are commonly influenced by local tectonic movements and paleogeographic variations. Factors governing the Earth's climate system include plate tectonics, which controls the configuration of continents, the interplay between the atmosphere and the ocean, and the Earth's orbital characteristics. Global paleoclimate indicators are established based on the information extracted from the analyses of geologic materials, including biological, geochemical and mineralogical data preserved in marine sediments. Indicators are generally grouped into three categories; paleontological, geochemical and lithological.

References

  1. 1 2 3 4 Muller, Richard A.; MacDonald, Gordon J. (2002). Ice ages and astronomical causes: data, spectral analysis and mechanisms. Springer Praxis books in environmental sciences (Repr ed.). London Berlin Heidelberg New York Barcelona Hong Kong Milan Paris Santa Clara Singapore Tokyo: Springer. ISBN   978-3-540-43779-6.
  2. 1 2 3 Huybers, Peter; Aharonson, Oded (2010). "Orbital tuning, eccentricity, and the frequency modulation of climatic precession: FM TO AM". Paleoceanography. 25 (4): n/a–n/a. doi:10.1029/2010PA001952 via AGU.
  3. 1 2 Blaauw, M., Out of tune: the dangers of aligning proxy archives, Quaternary Science Reviews (2010), doi:10.1016/j.quascirev.2010.11.012
  4. 1 2 Neeman, B. (1993). Orbital Tuning of Paleoclimatic Records: a Reassessment. Lawrence Berkeley National Laboratory. LBNL Report #: LBNL-39572. Retrieved from https://escholarship.org/uc/item/1zv400sz
  5. 1 2 Malinverno, A.; Erba, E.; Herbert, T. D. (2010). "Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE: ORBITAL TUNING AS AN INVERSE PROBLEM". Paleoceanography. 25 (2). doi:10.1029/2009PA001769.