Orca (carbon capture plant)

Last updated

The Orca carbon capture plant is a facility that uses direct air capture to remove carbon dioxide from the atmosphere (The name, "Orca" comes from the Icelandic word, "orka" which means "energy". [1] It was constructed by Climeworks and is joint work with Carbfix, an academic-industrial partnership that has developed a novel approach to capture CO2. The plant uses dozens of large fans to pull in air and pass it through a filter. The filter is then released of the CO2 it contains through heat. The CO2 extracted is later mixed with water and pushed into the ground, using a technology from Carbfix.

The plant started sequestering carbon dioxide in 2021. It is said to have cost between $10–15 million to build. [2] It is located in Iceland and is the largest facility of its kind on earth. [3] [4] [5] It is located about 50 kilometers outside Reykjavík next to the Hellisheiði Power Station, which is run by Reykjavík Energy. [6] It was inaugurated on 8 September 2021 in presence of Katrín Jakobsdóttir, the Prime Minister of Iceland.

Carbon offsetting potential

Climeworks claims that the plant can capture 4000 tons of CO2 per year. [7] [8] This equates roughly to the emissions from about 870 cars. [9] It counts Microsoft founder Bill Gates and the reinsurance company Swiss Re as current customers. [10]

The thousands of tons of carbon dioxide being removed is owed to the nearly 20 direct air capture plants currently functioning in the world. As the world's climate climbs towards 2 degrees Celsius, more technology is needed desperately to sustain our climate, preventing it from reaching severe temperatures. [11]

Related Research Articles

<span class="mw-page-title-main">Coal pollution mitigation</span>

Coal pollution mitigation, sometimes labeled as clean coal, is a series of systems and technologies that seek to mitigate health and environmental impact of burning coal for energy. Burning coal releases harmful substances that contribute to air pollution, acid rain, and greenhouse gas emissions. Mitigation includes precombustion approaches, such as cleaning coal, and post combustion approaches, include flue-gas desulfurization, selective catalytic reduction, electrostatic precipitators, and fly ash reduction. These measures aim to reduce coal's impact on human health and the environment.

<span class="mw-page-title-main">Carbon capture and storage</span> Collecting carbon dioxide from industrial emissions

Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the burning of fossil fuels or biomass results in a stream of CO2 that could be captured and stored by CCS. Usually the CO2 is captured from large point sources, such as a chemical plant or a bioenergy plant, and then stored in a suitable geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change. For example, CCS retrofits for existing power plants can be one of the ways to limit emissions from the electricity sector and meet the Paris Agreement goals.

<span class="mw-page-title-main">Virgin Earth Challenge</span> Competition for permanent removal of greenhouse gases

The Virgin Earth Challenge was a competition offering a $25 million prize for whoever could demonstrate a commercially viable design which results in the permanent removal of greenhouse gases out of the Earth's atmosphere to contribute materially in global warming avoidance. The prize was conceived by Richard Branson, and was announced in London on 9 February 2007 by Branson and former US Vice President Al Gore.

<span class="mw-page-title-main">Greenhouse gas emissions</span> Sources and amounts of greenhouse gases emitted to the atmosphere from human activities

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

<span class="mw-page-title-main">Energy in Iceland</span>

Iceland is a world leader in renewable energy. 100% of the electricity in Iceland's electricity grid is produced from renewable resources. In terms of total energy supply, 85% of the total primary energy supply in Iceland is derived from domestically produced renewable energy sources. Geothermal energy provided about 65% of primary energy in 2016, the share of hydropower was 20%, and the share of fossil fuels was 15%.

<span class="mw-page-title-main">Greenhouse gas emissions by the United States</span> Climate changing gases from the North American country

The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person.

<span class="mw-page-title-main">Carbon dioxide scrubber</span> Device which absorbs carbon dioxide from circulated gas

A carbon dioxide scrubber is a piece of equipment that absorbs carbon dioxide (CO2). It is used to treat exhaust gases from industrial plants or from exhaled air in life support systems such as rebreathers or in spacecraft, submersible craft or airtight chambers. Carbon dioxide scrubbers are also used in controlled atmosphere (CA) storage. They have also been researched for carbon capture and storage as a means of combating climate change.

The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed.

<span class="mw-page-title-main">Carbon dioxide removal</span> Removal of atmospheric carbon dioxide through human activity

Carbon dioxide removal (CDR) is a process in which carbon dioxide is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies. Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR. In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.

<span class="mw-page-title-main">Hellisheiði Power Station</span> Geothermal power station in Iceland

The Hellisheiði Power Station is the eighth-largest geothermal power station in the world and largest in Iceland. The facility is located in Hengill, southwest Iceland, 11 km (7 mi) from the Nesjavellir Geothermal Power Station. The plant has a capacity of 303 MW of electricity and 200 MWth of hot water for Reykjavík's district heating. The power station is owned and operated by ON Power, a subsidiary of Reykjavík Energy.

Carbfix is an Icelandic company that has developed an approach to permanently store CO2 by dissolving it in water and injecting it into basaltic rocks. Once in the subsurface, the injected CO2 reacts with the host rock forming stable carbonate minerals, thus providing permanent storage of the injected CO2

<span class="mw-page-title-main">Electrofuel</span> Carbon-neutral drop-in replacement fuel

Electrofuels, also known as e-fuels, a class of synthetic fuels, are a type of drop-in replacement fuel. They are manufactured using captured carbon dioxide or carbon monoxide, together with hydrogen obtained from water split by low-carbon electricity sources such as wind, solar and nuclear power.

Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.

<span class="mw-page-title-main">Carbon Engineering</span> Canadian energy company

Carbon Engineering Ltd. is a Canadian-based clean energy company focusing on the commercialization of direct air capture (DAC) technology that captures carbon dioxide directly from the atmosphere.

<span class="mw-page-title-main">Carbon capture and utilization</span>

Carbon capture and utilization (CCU) is the process of capturing carbon dioxide (CO2) from industrial processes and transporting it via pipelines to where one intends to use it in industrial processes.

<span class="mw-page-title-main">Direct air capture</span> Method of carbon capture from carbon dioxide in air

Direct air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted CO2 is then sequestered in safe long-term storage, the overall process will achieve carbon dioxide removal and be a "negative emissions technology" (NET).

Climeworks AG is a Swiss company specializing in direct air capture (DAC) technology. The company filters CO2 directly from the ambient air through an adsorption-desorption process. At its first commercial direct air capture and storage plant, Orca, in Hellisheidi, Iceland, the air-captured CO2 is handed over to storage partner Carbfix, who injects it deep underground where it mineralizes and turns into stone. Climeworks's machines are powered by renewable energy or energy-from-waste, with a carbon dioxide re-emission rate of less than 10%.

The Carbon Connect Delta Program is a proposed carbon sequestration program to aid Belgium and the Netherlands in achieving carbon neutrality by 2030. It aims to capture, transport, and store 6.5 million tones of CO2 by 2030 using carbon capture and storage (CCS) in the transboundary area of the North Sea Port area of the Scheldt-Delta region connecting Belgium and the Netherlands.

References

  1. "Carbon capture and storage plant becomes operational in Iceland". UNESCO. September 20, 2021. Retrieved April 6, 2024.
  2. "World's biggest machine capturing carbon from air turned on in Iceland". the Guardian. Agence France-Presse. 2021-09-09. Retrieved 2021-12-26.
  3. "World's biggest machine capturing carbon from air turned on in Iceland". The Guardian . 8 September 2021.
  4. "The world's biggest carbon-removal plant switches on". The Economist . 18 September 2021. Retrieved 16 September 2021.
  5. Birnbaum, Michael (8 September 2021). "The world's biggest plant to capture CO2 from the air just opened in Iceland" . Retrieved 16 September 2021.
  6. Brown, Chris (30 October 2021). "In Iceland, can a revolutionary new process actually help stop global warming?" . Retrieved 30 October 2021.
  7. "The next step towards a climate-positive world: Orca!". climeworks.com. Retrieved 2021-12-26.
  8. "World's largest plant capturing carbon from air starts in Iceland". Reuters. 2021-09-13. Retrieved 2021-12-26.
  9. "World's biggest machine capturing carbon from air turned on in Iceland". the Guardian. Agence France-Presse. 2021-09-09. Retrieved 2021-12-26.
  10. Hook, Leslie (2021-09-08). "World's biggest 'direct air capture' plant starts pulling in CO2". Financial Times. Retrieved 2021-12-26.
  11. Okonkwo, Eric; AlNouss, Ahmed; Shahbaz, Muhammad; Al-Ansari, Tareq (November 15, 2023). "Developing integrated direct air capture and bioenergy with carbon capture and storage systems: progress towards 2 °C and 1.5 °C climate goals". Energy Conversion and Management. 296 via Elsevier Science Direct.