Ordered weighted averaging

Last updated

In applied mathematics, specifically in fuzzy logic, the ordered weighted averaging (OWA) operators provide a parameterized class of mean type aggregation operators. They were introduced by Ronald R. Yager. [1] [2] Many notable mean operators such as the max, arithmetic average, median and min, are members of this class. They have been widely used in computational intelligence because of their ability to model linguistically expressed aggregation instructions.

Contents

Definition

An OWA operator of dimension is a mapping that has an associated collection of weights lying in the unit interval and summing to one and with

where is the jth largest of the .

By choosing different W one can implement different aggregation operators. The OWA operator is a non-linear operator as a result of the process of determining the bj.

Notable OWA operators

if and for
if and for
if for all

Properties

The OWA operator is a mean operator. It is bounded, monotonic, symmetric, and idempotent, as defined below.

Bounded
Monotonic if for
Symmetric if is a permutation map
Idempotent if all

Characterizing features

Two features have been used to characterize the OWA operators. The first is the attitudinal character, also called orness. [1] This is defined as

It is known that .

In addition A  C(max) = 1, A  C(ave) = A  C(med) = 0.5 and A  C(min) = 0. Thus the A  C goes from 1 to 0 as we go from Max to Min aggregation. The attitudinal character characterizes the similarity of aggregation to OR operation(OR is defined as the Max).

The second feature is the dispersion. This defined as

An alternative definition is The dispersion characterizes how uniformly the arguments are being used.

Type-1 OWA aggregation operators

The above Yager's OWA operators are used to aggregate the crisp values. Can we aggregate fuzzy sets in the OWA mechanism? The Type-1 OWA operators have been proposed for this purpose. [3] [4] So the type-1 OWA operators provides us with a new technique for directly aggregating uncertain information with uncertain weights via OWA mechanism in soft decision making and data mining, where these uncertain objects are modelled by fuzzy sets.

The type-1 OWA operator is defined according to the alpha-cuts of fuzzy sets as follows:

Given the n linguistic weights in the form of fuzzy sets defined on the domain of discourse , then for each , an -level type-1 OWA operator with -level sets to aggregate the -cuts of fuzzy sets is given as

where , and is a permutation function such that , i.e., is the th largest element in the set .

The computation of the type-1 OWA output is implemented by computing the left end-points and right end-points of the intervals : and where . Then membership function of resulting aggregation fuzzy set is:

For the left end-points, we need to solve the following programming problem:

while for the right end-points, we need to solve the following programming problem:

This paper [5] has presented a fast method to solve two programming problem so that the type-1 OWA aggregation operation can be performed efficiently.

OWA for committee voting

Amanatidis, Barrot, Lang, Markakis and Ries [6] present voting rules for multi-issue voting, based on OWA and the Hamming distance. Barrot, Lang and Yokoo [7] study the manipulability of these rules.

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

The Gram–Charlier A series, and the Edgeworth series are series that approximate a probability distribution in terms of its cumulants. The series are the same; but, the arrangement of terms differ. The key idea of these expansions is to write the characteristic function of the distribution whose probability density function f is to be approximated in terms of the characteristic function of a distribution with known and suitable properties, and to recover f through the inverse Fourier transform.

<span class="mw-page-title-main">Fermi's interaction</span> Mechanism of beta decay proposed in 1933

In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if L/K is an extension of fields with cyclic Galois group G = Gal(L/K) generated by an element and if is an element of L of relative norm 1, that is

In mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.

In the theory of partial differential equations, Holmgren's uniqueness theorem, or simply Holmgren's theorem, named after the Swedish mathematician Erik Albert Holmgren (1873–1943), is a uniqueness result for linear partial differential equations with real analytic coefficients.

Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis. In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. LS-SVMs are a class of kernel-based learning methods.

<span class="mw-page-title-main">Logit-normal distribution</span>

In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution. If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed. It is also known as the logistic normal distribution, which often refers to a multinomial logit version (e.g.).

Type-1 OWA operators are a set of aggregation operators that generalise the Yager's OWA operators) in the interest of aggregating fuzzy sets rather than crisp values in soft decision making and data mining.

The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.

This article summarizes several identities in exterior calculus.

Flag algebras are an important computational tool in the field of graph theory which have a wide range of applications in homomorphism density and related topics. Roughly, they formalize the notion of adding and multiplying homomorphism densities and set up a framework to solve graph homomorphism inequalities with computers by reducing them to semidefinite programming problems. Originally introduced by Alexander Razborov in a 2007 paper, the method has since come to solve numerous difficult, previously unresolved graph theoretic questions. These include the question regarding the region of feasible edge density, triangle density pairs and the maximum number of pentagons in triangle free graphs.

References

  1. 1 2 Yager, R. R., "On ordered weighted averaging aggregation operators in multi-criteria decision making," IEEE Transactions on Systems, Man, and Cybernetics 18, 183–190, 1988.
  2. S.-M. Zhou, F. Chiclana, R. I. John and J. M. Garibaldi, "Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers," Fuzzy Sets and Systems, Vol.159, No.24, pp. 3281–3296, 2008
  3. S.-M. Zhou, R. I. John, F. Chiclana and J. M. Garibaldi, "On aggregating uncertain information by type-2 OWA operators for soft decision making," International Journal of Intelligent Systems, vol. 25, no.6, pp. 540–558, 2010.
  4. S.-M. Zhou, F. Chiclana, R. I. John and J. M. Garibaldi, "Alpha-level aggregation: a practical approach to type-1 OWA operation for aggregating uncertain information with applications to breast cancer treatments," IEEE Transactions on Knowledge and Data Engineering, vol. 23, no.10, 2011, pp. 1455–1468.
  5. Amanatidis, Georgios; Barrot, Nathanaël; Lang, Jérôme; Markakis, Evangelos; Ries, Bernard (2015-05-04). "Multiple Referenda and Multiwinner Elections Using Hamming Distances: Complexity and Manipulability". Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. AAMAS '15. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems: 715–723. ISBN   978-1-4503-3413-6.
  6. Barrot, Nathanaël; Lang, Jérôme; Yokoo, Makoto (2017-05-08). "Manipulation of Hamming-based Approval Voting for Multiple Referenda and Committee Elections". Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems. AAMAS '17. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems: 597–605.