Original antigenic sin

Last updated
The original antigenic sin: When the body first encounters an infection it produces effective antibodies against its dominant antigens and thus eliminates the infection. But when it encounters the same infection, at a later evolved stage, with a new dominant antigen, with the original antigen now being recessive, the immune system will still produce the former antibodies against this old "now recessive antigen" and not develop new antibodies against the new dominant one. This results in the production of ineffective antibodies and thus a weak immunity. Original Antigenic Sin.svg
The original antigenic sin: When the body first encounters an infection it produces effective antibodies against its dominant antigens and thus eliminates the infection. But when it encounters the same infection, at a later evolved stage, with a new dominant antigen, with the original antigen now being recessive, the immune system will still produce the former antibodies against this old "now recessive antigen" and not develop new antibodies against the new dominant one. This results in the production of ineffective antibodies and thus a weak immunity.

Original antigenic sin, also known as antigenic imprinting, the Hoskins effect, [1] immunological imprinting, [2] or primary addiction [3] is the propensity of the immune system to preferentially use immunological memory based on a previous infection when a second slightly different version of that foreign pathogen (e.g. a virus or bacterium) is encountered. This leaves the immune system "trapped" by the first response it has made to each antigen, and unable to mount potentially more effective responses during subsequent infections. Antibodies or T-cells induced during infections with the first variant of the pathogen are subject to repertoire freeze, a form of original antigenic sin.

Contents

The phenomenon has been described in relation to influenza virus, SARS-CoV-2, [2] dengue fever, human immunodeficiency virus (HIV) [4] and to several other viruses. [5]

History

This phenomenon was first described in 1960 by Thomas Francis Jr. in the article "On the Doctrine of Original Antigenic Sin". [6] [7] It is named by analogy to the Christian theological concept of original sin. According to Francis as cited by Richard Krause: [7]

The antibody of childhood is largely a response to dominant antigen of the virus causing the first type A influenza infection of the lifetime. [...] The imprint established by the original virus infection governs the antibody response thereafter. This we have called the Doctrine of the Original Antigenic Sin.

In B cells

A memory B cell specific for Virus A is preferentially activated by a new strain, Virus A , and produces antibodies that ineffectively bind to the A strain. These antibodies inhibit activation of a naive B cell that produces better antibodies against Virus A . This effect leads to a diminished immune response against Virus A and heightens the potential for serious infection. Original antigenic sin.svg
A memory B cell specific for Virus A is preferentially activated by a new strain, Virus A , and produces antibodies that ineffectively bind to the A strain. These antibodies inhibit activation of a naive B cell that produces better antibodies against Virus A . This effect leads to a diminished immune response against Virus A and heightens the potential for serious infection.

During a primary infection, long-lived memory B cells are generated, which remain in the body and protect from subsequent infections. These memory B cells respond to specific epitopes on the surface of viral proteins to produce antigen-specific antibodies and can respond to infection much faster than naive B cells can to novel antigens. This effect lessens time needed to clear subsequent infections.

Between primary and secondary infections or following vaccination, a virus may undergo antigenic drift, in which the viral surface proteins (the epitopes) change through natural mutation. This allows the virus to escape the immune system. The altered virus preferentially reactivates previously activated high-affinity memory B cells and spurs antibody production. However, the antibodies produced generally ineffectively bind to the altered epitopes. In addition, these antibodies inhibit activation of naive B cells that could make more effective antibodies to the second virus. This leads to a less effective immune response and recurrent infections may take longer to clear. [8]

Original antigenic sin has important implications for vaccine development. [9] In dengue fever, for example, once a response against one serotype has been established, it is unlikely that vaccination against a second will be effective. This implies that balanced responses against all four virus serotypes must be established with the first vaccine dose. [10]

Activation of naive B cells that recognize novel epitopes may be attenuated with repeated infection with variant influenza viruses. [11] However, the impact of antigenic sin on protection has not been well established and appears to differ with each infectious agent vaccine, geographic location, and age. [8] Research done in 2011 found reduced antibody responses to the 2009 pandemic H1N1 influenza vaccine in individuals who had been vaccinated against the seasonal A/Brisbane/59/2007 (H1N1) within the previous three months. [9]

The relative ineffectiveness of the bivalent booster against the SARS-CoV-2 Omicron variant in patients who had previously received COVID-19 vaccines has been attributed to immunological imprinting. [12]

In cytotoxic T cells

A similar phenomenon has been described in cytotoxic T cells (CTL). [13] It has been demonstrated that during a second infection by a different strain of dengue virus, the CTLs prefer to release cytokines instead of causing cell lysis. As a result, the production of these cytokines is thought to increase vascular permeability and exacerbate damage to endothelial cells, resulting in dengue hemorrhagic fever. [14]

Several groups have attempted to design vaccines for HIV and hepatitis C based on induction of CTL response. The finding that the CTL response may be biased by original antigenic sin may help to explain the limited effectiveness of these vaccines. Viruses like HIV are highly variable and undergo mutation frequently; due to original antigenic sin, HIV infection induced by viruses that express slightly different epitopes (than those in a viral vaccine) might fail to be controlled by the vaccine. It has been hypothesized that: if original antigenic sin is a common phenomenon, a naively designed single-component vaccine could conceivably make an infection even worse than if no vaccination at all had occurred. The hypothesized mechanism is that the immune response would be "trapped" in a less effective response. Therefore, a recommendation was made for vaccines with multiple components or that target conserved epitopes. [13]

See also

Related Research Articles

<span class="mw-page-title-main">DNA vaccine</span> Vaccine containing DNA

A DNA vaccine is a type of vaccine that transfects a specific antigen-coding DNA sequence into the cells of an organism as a mechanism to induce an immune response.

<span class="mw-page-title-main">Antiviral drug</span> Medication used to treat a viral infection

Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Antiviral drugs are a class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs, or antiviral drugs based on monoclonal antibodies. Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from virucides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural virucides are produced by some plants such as eucalyptus and Australian tea trees.

<span class="mw-page-title-main">HIV vaccine development</span> In-progress vaccinations that may prevent or treat HIV infections

An HIV vaccine is a potential vaccine that could be either a preventive vaccine or a therapeutic vaccine, which means it would either protect individuals from being infected with HIV or treat HIV-infected individuals.

Antigenic drift is a kind of genetic variation in viruses, arising from the accumulation of mutations in the virus genes that code for virus-surface proteins that host antibodies recognize. This results in a new strain of virus particles that is not effectively inhibited by the antibodies that prevented infection by previous strains. This makes it easier for the changed virus to spread throughout a partially immune population. Antigenic drift occurs in both influenza A and influenza B viruses.

<span class="mw-page-title-main">Memory B cell</span> Cell of the adaptive immune system

In immunology, a memory B cell (MBC) is a type of B lymphocyte that forms part of the adaptive immune system. These cells develop within germinal centers of the secondary lymphoid organs. Memory B cells circulate in the blood stream in a quiescent state, sometimes for decades. Their function is to memorize the characteristics of the antigen that activated their parent B cell during initial infection such that if the memory B cell later encounters the same antigen, it triggers an accelerated and robust secondary immune response. Memory B cells have B cell receptors (BCRs) on their cell membrane, identical to the one on their parent cell, that allow them to recognize antigen and mount a specific antibody response.

<span class="mw-page-title-main">Adaptive immune system</span> Subsystem of the immune system

The adaptive immune system, also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system is one of the two main immunity strategies found in vertebrates.

Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.

A breakthrough infection is a case of illness in which a vaccinated individual becomes infected with the illness, because the vaccine has failed to provide complete immunity against the pathogen. Breakthrough infections have been identified in individuals immunized against a variety of diseases including mumps, varicella (Chickenpox), influenza, and COVID-19. The characteristics of the breakthrough infection are dependent on the virus itself. Often, infection of the vaccinated individual results in milder symptoms and shorter duration than if the infection were contracted naturally.

<span class="mw-page-title-main">Antibody-dependent enhancement</span> Antibodies rarely making an infection worse instead of better

Antibody-dependent enhancement (ADE), sometimes less precisely called immune enhancement or disease enhancement, is a phenomenon in which binding of a virus to suboptimal antibodies enhances its entry into host cells, followed by its replication. The suboptimal antibodies can result from natural infection or from vaccination. ADE may cause enhanced respiratory disease, but is not limited to respiratory disease. It has been observed in HIV, RSV virus and Dengue virus and is monitored for in vaccine development.

<span class="mw-page-title-main">Pandemrix</span> Flu vaccine

Pandemrix is an influenza vaccine for influenza pandemics, such as the 2009 flu pandemic. The vaccine was developed by GlaxoSmithKline (GSK) and patented in September 2006.

<span class="mw-page-title-main">Influenza</span> Infectious disease, often just "the flu"

Influenza, commonly known as "the flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin from one to four days after exposure to the virus and last for about 2–8 days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia, which can be caused by the virus or by a subsequent bacterial infection. Other complications of infection include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.

Immune stimulating complexes (ISCOMs) are spherical open cage-like structures (typically 40 nm in diameter) that are spontaneously formed when mixing together cholesterol, phospholipids and Quillaja saponins under a specific stoichiometry. The complex displays immune stimulating properties and is thus mainly used as a vaccine adjuvant in order to induce a stronger immune response and longer protection. A specific adjuvant based on ISCOM technology is Matrix-M.

A subunit vaccine is a vaccine that contains purified parts of the pathogen that are antigenic, or necessary to elicit a protective immune response. Subunit vaccine can be made from dissembled viral particles in cell culture or recombinant DNA expression, in which case it is a recombinant subunit vaccine.

A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy.

The immune network theory is a theory of how the adaptive immune system works, that has been developed since 1974 mainly by Niels Jerne and Geoffrey W. Hoffmann. The theory states that the immune system is an interacting network of lymphocytes and molecules that have variable (V) regions. These V regions bind not only to things that are foreign to the vertebrate, but also to other V regions within the system. The immune system is therefore seen as a network, with the components connected to each other by V-V interactions.

Peptide-based synthetic vaccines are subunit vaccines made from peptides. The peptides mimic the epitopes of the antigen that triggers direct or potent immune responses. Peptide vaccines can not only induce protection against infectious pathogens and non-infectious diseases but also be utilized as therapeutic cancer vaccines, where peptides from tumor-associated antigens are used to induce an effective anti-tumor T-cell response.

MHC multimers are oligomeric forms of MHC molecules, designed to identify and isolate T-cells with high affinity to specific antigens amid a large group of unrelated T-cells. Multimers generally range in size from dimers to octamers; however, some companies use even higher quantities of MHC per multimer. Multimers may be used to display class 1 MHC, class 2 MHC, or nonclassical molecules from species such as monkeys, mice, and humans.

Immunodominance is the immunological phenomenon in which immune responses are mounted against only a few of the antigenic peptides out of the many produced. That is, despite multiple allelic variations of MHC molecules and multiple peptides presented on antigen presenting cells, the immune response is skewed to only specific combinations of the two. Immunodominance is evident for both antibody-mediated immunity and cell-mediated immunity. Epitopes that are not targeted or targeted to a lower degree during an immune response are known as subdominant epitopes. The impact of immunodominance is immunodomination, where immunodominant epitopes will curtail immune responses against non-dominant epitopes. Antigen-presenting cells such as dendritic cells, can have up to six different types of MHC molecules for antigen presentation. There is a potential for generation of hundreds to thousands of different peptides from the proteins of pathogens. Yet, the effector cell population that is reactive against the pathogen is dominated by cells that recognize only a certain class of MHC bound to only certain pathogen-derived peptides presented by that MHC class. Antigens from a particular pathogen can be of variable immunogenicity, with the antigen that stimulates the strongest response being the immunodominant one. The different levels of immunogenicity amongst antigens forms what is known as dominance hierarchy.

<span class="mw-page-title-main">Universal flu vaccine</span> Vaccine that prevents infection from all strains of the flu

A universal flu vaccine is a flu vaccine that is effective against all influenza strains regardless of the virus sub type, antigenic drift or antigenic shift. Hence it should not require modification from year to year. As of 2021 no universal flu vaccine had been approved for general use, several were in development, and one was in clinical trial.

Intrastructural help (ISH) is where T and B cells cooperate to help or suppress an immune response gene. ISH has proven effective for the treatment of influenza, rabies related lyssavirus, hepatitis B, and the HIV virus. This process was used in 1979 to observe that T cells specific to the influenza virus could promote the stimulation of hemagglutinin specific B cells and elicit an effective humoral immune response. It was later applied to the lyssavirus and was shown to protect raccoons from lethal challenge. The ISH principle is especially beneficial because relatively invariable structural antigens can be used for the priming of T-cells to induce humoral immune response against variable surface antigens. Thus, the approach has also transferred well for the treatment of hepatitis B and HIV.

References

  1. Hoskins, T.W.; Davies, Joan R.; Smith, A.J.; Miller, Christine L.; Allchin, Audrey (1979). "Assessment of inactivated influenza-A vaccine after three outbreaks of influenza A at Christ's Hospital" . The Lancet. 313 (8106): 33–35. doi:10.1016/s0140-6736(79)90468-9. PMID   83475. S2CID   26802171.
  2. 1 2 Focosi, Daniele; Genoni, Angelo; Lucenteforte, Ersilia; Tillati, Silvia; Tamborini, Antonio; Spezia, Pietro Giorgio; Azzi, Lorenzo; Baj, Andreina; Maggi, Fabrizio (2021-04-01). "Previous Humoral Immunity to the Endemic Seasonal Alphacoronaviruses NL63 and 229E Is Associated with Worse Clinical Outcome in COVID-19 and Suggests Original Antigenic Sin". Life. 11 (4): 298. doi: 10.3390/life11040298 . ISSN   2075-1729. PMC   8067214 . PMID   33915711.
  3. Schiepers, Ariën; van ’t Wout, Marije; et al. (6 September 2022). "Molecular fate-mapping of serum antibodies reveals the effects of antigenic imprinting on repeated immunization". bioRxiv   10.1101/2022.08.29.505743 .
  4. Singh, Rana AK; Rodgers, John R; Barry, Michael A (2002). "The role of T cell antagonism and original antigenic sin in genetic immunization" (PDF). The Journal of Immunology. 169 (12): 6779–6786. doi: 10.4049/jimmunol.169.12.6779 . PMID   12471109 . Retrieved May 14, 2021.
  5. Deem, Michael W. The Adaptive Immune Response Archived 2008-07-04 at the Wayback Machine Rice University
  6. Thomas Francis Jr (1960). "On the doctrine of original antigenic sin". Proceedings of the American Philosophical Society. 104 (6): 572–578. JSTOR   985534.
  7. 1 2 Krause R (2006). "The swine flu episode and the fog of epidemics". Emerg Infect Dis. 12 (1): 40–43. doi:10.3201/eid1201.051132. PMC   3291407 . PMID   16494715.
  8. 1 2 Lambert PH, Liu M, Siegrist CA (2005). "Can successful vaccines teach us how to induce efficient protective immune responses?". Nat Med. 11 (4 Suppl): S54–62. doi: 10.1038/nm1216 . PMID   15812491. S2CID   11685892.
  9. 1 2 Choi, Yoon Seok; Baek, Yun Hee; Kang, Wonseok; et al. (September 2011). "Reduced Antibody Responses to the Pandemic (H1N1) 2009 Vaccine after Recent Seasonal Influenza Vaccination". Clinical and Vaccine Immunology. 18 (9): 1519–1523. doi:10.1128/CVI.05053-11. PMC   3165229 . PMID   21813667.
  10. Midgley, Claire M.; Bajwa-Joseph, Martha; Vasanawathana, Sirijitt; et al. (January 2011). "An In-Depth Analysis of Original Antigenic Sin in Dengue Virus Infection". Journal of Virology. 85 (1): 410–421. doi:10.1128/JVI.01826-10. PMC   3014204 . PMID   20980526.
  11. Kim, J.H.; Skountzou, I.; Compans, R.; Jacob, J. (1 September 2009). "Original antigenic sin responses to influenza viruses". Journal of Immunology. 183 (5): 3294–301. doi:10.4049/jimmunol.0900398. PMC   4460008 . PMID   19648276.
  12. Offit PA (2023). "Bivalent Covid-19 Vaccines - A Cautionary Tale". The New England Journal of Medicine . 388 (6): 481–483. doi: 10.1056/NEJMp2215780 . PMID   36630616. S2CID   255748794.
  13. 1 2 McMichael AJ (1998). "The original sin of killer T cells". Nature. 394 (6692): 421–422. doi: 10.1038/28738 . PMID   9697760.
  14. Juthathip Mongkolsapaya (2006). "T Cell Responses in Dengue Hemorrhagic Fever: Are Cross-Reactive T Cells Suboptimal?". J. Immunol. 176 (6): 3821–3829. doi: 10.4049/jimmunol.176.6.3821 . PMID   16517753.