Ostrogradsky instability

Last updated

In applied mathematics, the Ostrogradsky instability is a feature of some solutions of theories having equations of motion with more than two time derivatives (higher-derivative theories). It is suggested by a theorem of Mikhail Ostrogradsky in classical mechanics according to which a non-degenerate Lagrangian dependent on time derivatives higher than the first corresponds to a Hamiltonian unbounded from below. As usual, the Hamiltonian is associated with the Lagrangian via a Legendre transform. The Ostrogradsky instability has been proposed as an explanation as to why no differential equations of higher order than two appear to describe physical phenomena. [1] However, Ostrogradsky's theorem does not imply that all solutions of higher-derivative theories are unstable as many counterexamples are known. [2] [3] [4] [5] [6] [7] [8] [9] [10]

Outline of proof [11]

The main points of the proof can be made clearer by considering a one-dimensional system with a Lagrangian . The Euler–Lagrange equation is

Non-degeneracy of means that the canonical coordinates can be expressed in terms of the derivatives of and vice versa. Thus, is a function of (if it were not, the Jacobian would vanish, which would mean that is degenerate), meaning that we can write or, inverting, . Since the evolution of depends upon four initial parameters, this means that there are four canonical coordinates. We can write those as

and by using the definition of the conjugate momentum,

The above results can be obtained as follows. First, we rewrite the Lagrangian into "ordinary" form by introducing a Lagrangian multiplier as a new dynamic variable

,

from which, the Euler-Lagrangian equations for read

,
,
,

Now, the canonical momentum with respect to are readily shown to be

while

These are precisely the definitions given above by Ostrogradski. One may proceed further to evaluate the Hamiltonian

,

where one makes use of the above Euler-Lagrangian equations for the second equality. We note that due to non-degeneracy, we can write as . Here, only three arguments are needed since the Lagrangian itself only has three free parameters. Therefore, the last expression only depends on , it effectively serves as the Hamiltonian of the original theory, namely,

.

We now notice that the Hamiltonian is linear in . This is a source of Ostrogradsky instability, and it stems from the fact that the Lagrangian depends on fewer coordinates than there are canonical coordinates (which correspond to the initial parameters needed to specify the problem). The extension to higher dimensional systems is analogous, and the extension to higher derivatives simply means that the phase space is of even higher dimension than the configuration space.

Notes

  1. Motohashi, Hayato; Suyama, Teruaki (2015). "Third-order equations of motion and the Ostrogradsky instability". Physical Review D. 91 (8): 085009. arXiv: 1411.3721 . Bibcode:2015PhRvD..91h5009M. doi:10.1103/PhysRevD.91.085009. S2CID   118565011.
  2. Pais, A.; Uhlenbeck, G. E. (1950). "On Field theories with nonlocalized action". Physical Review. 79 (145): 145–165. Bibcode:1950PhRv...79..145P. doi:10.1103/PhysRev.79.145. S2CID   123644136.
  3. Pagani, E.; Tecchiolli, G.; Zerbini, S. (1987). "On the Problem of Stability for Higher Order Derivatives: Lagrangian Systems". Letters in Mathematical Physics. 14 (311): 311–319. Bibcode:1987LMaPh..14..311P. doi:10.1007/BF00402140. S2CID   120866609.
  4. Smilga, A. V. (2005). "Benign vs. Malicious ghosts in higher-derivative theories". Nuclear Physics B. 706 (598): 598–614. arXiv: hep-th/0407231 . Bibcode:2005NuPhB.706..598S. doi:10.1016/j.nuclphysb.2004.10.037. S2CID   2058604.
  5. Pavsic, M. (2013). "Stable Self-Interacting Pais-Uhlenbeck Oscillator". Modern Physics Letters A. 28 (1350165). arXiv: 1302.5257 . Bibcode:2013MPLA...2850165P. doi:10.1142/S0217732313501654.
  6. Kaparulin, D. S.; Lyakhovich, S. L.; Sharapov, A. A. (2014). "Classical and quantum stability of higher-derivative dynamics". The European Physical Journal C. 74 (3072): 3072. arXiv: 1407.8481 . Bibcode:2014EPJC...74.3072K. doi:10.1140/epjc/s10052-014-3072-3. S2CID   54059979.
  7. Pavsic, M. (2016). "Pais-Uhlenbeck oscillator and negative energies". International Journal of Geometric Methods in Modern Physics. 13 (1630015): 1630015–1630517. arXiv: 1607.06589 . Bibcode:2016IJGMM..1330015P. doi:10.1142/S0219887816300154.
  8. Smilga, A. V. (2017). "Classical and quantum dynamics of higher-derivative systems". International Journal of Modern Physics A. 32 (1730025). arXiv: 1710.11538 . Bibcode:2017IJMPA..3230025S. doi:10.1142/S0217751X17300253. S2CID   119435244.
  9. Salvio, A. (2018). "Quadratic Gravity". Frontiers in Physics. 6 (77): 77. arXiv: 1804.09944 . Bibcode:2018FrP.....6...77S. doi: 10.3389/fphy.2018.00077 .
  10. Salvio, A. (2019). "Metastability in Quadratic Gravity". Physical Review D. 99 (10): 103507. arXiv: 1902.09557 . Bibcode:2019PhRvD..99j3507S. doi:10.1103/PhysRevD.99.103507. S2CID   102354306.
  11. Woodard, R.P. (2007). "Avoiding Dark Energy with 1/R Modifications of Gravity". The Invisible Universe: Dark Matter and Dark Energy (PDF). Lecture Notes in Physics. Vol. 720. pp. 403–433. arXiv: astro-ph/0601672 . doi:10.1007/978-3-540-71013-4_14. ISBN   978-3-540-71012-7. S2CID   16631993.

Related Research Articles

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

<span class="mw-page-title-main">Calculus of variations</span> Differential calculus on function spaces

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

A first class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space. To calculate the first class constraint, one assumes that there are no second class constraints, or that they have been calculated previously, and their Dirac brackets generated.

The Hamiltonian constraint arises from any theory that admits a Hamiltonian formulation and is reparametrisation-invariant. The Hamiltonian constraint of general relativity is an important non-trivial example.

In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime.

In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt(ξ)∈TM obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive reparameterizations. If this requirement is dropped, H is called a semispray.

<span class="mw-page-title-main">Geodesics in general relativity</span> Generalization of straight line to a curved space time

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

<span class="mw-page-title-main">Routhian mechanics</span> Formulation of classical mechanics

In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.

The Hamiltonian is a function used to solve a problem of optimal control for a dynamical system. It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. Inspired by, but distinct from, the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian.

In classical mechanics, the Hannay angle is a mechanics analogue of the whirling geometric phase. It was named after John Hannay of the University of Bristol, UK. Hannay first described the angle in 1985, extending the ideas of the recently formalized Berry phase to classical mechanics.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique.

In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle YX and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of YX.

In analytical mechanics and quantum field theory, minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher multipole moments of the charge distribution. This minimal coupling is in contrast to, for example, Pauli coupling, which includes the magnetic moment of an electron directly in the Lagrangian.

The Koopman–von Neumann mechanics is a description of classical mechanics in terms of Hilbert space, introduced by Bernard Koopman and John von Neumann in 1931 and 1932, respectively.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

In general relativity, light is assumed to propagate in a vacuum along a null geodesic in a pseudo-Riemannian manifold. Besides the geodesics principle in a classical field theory there exists Fermat's principle for stationary gravity fields.

In theoretical physics, Hamiltonian field theory is the field-theoretic analogue to classical Hamiltonian mechanics. It is a formalism in classical field theory alongside Lagrangian field theory. It also has applications in quantum field theory.