Oxhydroelectric effect

Last updated

The oxhydroelectric effect consists in the generation of voltage and electric current in pure liquid water, without any electrolyte, upon exposure to electromagnetic radiation in the infrared range, after creating a physical (not chemical) asymmetry in liquid water e.g. thanks to a strongly hydrophile polymer, such as Nafion. [1] [2] [3]

Since the publication of the first seminal research, other independent research has been published, which refer to this effect, in scientific peer reviewed, reputable journals (with impact factors higher than the median in the respective fields). [4] [5] [6] [7] [8]

The system can be described as a photovoltaic cell operating in the infrared electromagnetic range, based on liquid water instead of a semiconductor.

Theoretical model

The model proposed by Roberto Germano and his collaborators, who have first observed the effect [1] [2] [3] is based on the known concept of the exclusion zone. The first observations of a different behaviour of water molecules close to the walls of its container date back to late ‘60s and early ‘70s, when Drost-Hansen, upon reviewing many experimental articles, came to the conclusion that interfacial water shows structural difference with respect to the bulk liquid water. [9] [10]

In 2006 Gerald Pollack published a seminal work on the exclusion zone [11] and those observations were subsequently reported by several other groups, [12] [13] in which a hydrophilic material creates a coherent water region at the boundary between its surface and the water.

Further elaborating on the work of Pollack, the model describes liquid water as a system made of two phases: a matrix of non-coherent water molecules hosting many “Coherence Domains” (CDs), about 0.1 um in size, found in the exclusion zone, but also in the bulk volume. In this model the behaviour of the coherence domains is also considered as the cause for the formation of xerosydryle.

The two phases, are characterized by different thermodynamic parameters, and are in a stable non-equilibrium state.

The coherent phase should be described by a quantum state, and in particular a state oscillating between a fundamental state, where electrons are firmly bound (ionization energy of 12.60 eV), and an excited state characterized by a quasi-free electron configuration. The energy of the excited state is 12.06 eV, which means that only a small amount of energy as small as (12.60 - 12.06) eV = 0.54 eV (Infrared range) is sufficient to extract an electron.

Then, at a fixed temperature and for molecules density exceeding a threshold, the transition of the non-coherent water molecules to the coherence state is spontaneous because it is driving the system to a lower energy configuration. More exactly, the almost free electrons have to cross an energy barrier of (0.54 - Χ) eV, where Χ ~ 0.1 eV is the electric potential difference at the CD boundary with the non-coherent water. This small amount of energy, ~ 0.44 eV, necessary for the electron extraction, makes the coherent water a reservoir of quasi-free electrons that can be easily released by Infrared stimulation, or quantum tunnel effect or by small external perturbation.

The two water phases, with their different potentials behave as the two components of a photovoltaic cell based on semiconductors. Then, in the cell described in the patent, [3] one of the two sectors has sheets of hydrophilic material, which create (more) coherent domains in that sector, with respect to the other sector.

Notes

  1. 1 2 Germano; Tontodonato; Hison; Cirillo; Tuccinardi (2012). "Oxhydroelectric Effect: Electricity from Water by Twin Electrodes". Key Engineering Materials. 495: 100–103.
  2. 1 2 V. Elia, R. Germano; C. Hison, E. Del Giudice (2013). "Oxhydroelectric Effect in bi-distilled water". Key Engineering Materials. 543: 455–459. doi:10.4028/www.scientific.net/KEM.543.455. S2CID   94391774.
  3. 1 2 3 Italy ITRM20120223A1,Vittorio Elia&Roberto Germano,"Procedure and apparatus for the extraction of electricity from water",published 2013-11-18,issued 2012-05-17
  4. Ho, Mae-Wan (2014). "Illuminating Water and Life". Entropy. 16: 4874–4891.
  5. Musumeci; Pollack (2014). "High electrical permittivity of ultrapure water at the water–platinum interface". Chemical Physics Letters. 613: 19–23.
  6. Jiang; Liu; Amos Yinnon; Kong (2017). "Effects of Interfaces on Dynamics in Micro-Fluidic Devices: Slip-Boundaries' Impact on Rotation Characteristics of Polar Liquid Film Motors". Commun. Theor. Phys. 67: 577–589.
  7. Jerman; Ogrizek; Periček Krapež; Jan (2023). "Physicochemical Study of the Molecular Signal Transfer of Ultra-High Diluted Antibodies to Interferon-Gamma". International Journal of Molecular Sciences. 24: 11961.
  8. Madl; Renati (2023). "Quantum Electrodynamics Coherence and Hormesis: Foundations of Quantum Biology". International Journal of Molecular Sciences. 24: 14003.
  9. W. Drost-Hansen (1969). "Structure of Water Near Solid Interfaces". Ind. Eng. Chem. 61 (11): 10–47. doi:10.1021/ie50719a005.
  10. W. Drost-Hansen (1973). "Phase transitions in biological systems: Manifestations of cooperative processes in vicinal water". Ann. N. Y. Acad. Sci. 204 (1): 100–112. Bibcode:1973NYASA.204..100D. doi:10.1111/j.1749-6632.1973.tb30773.x. PMID   4513148. S2CID   35243683.
  11. G.H. Pollack, J.M. Zheng; E. Khijniak, W.C. Chin (2006). "Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact". Advances in Colloid and Interface Science. 127 (1): 19–27. doi:10.1016/j.cis.2006.07.002. PMID   16952332.
  12. C.M. Wu, C.S. Chen; W.C. Chin, Chung, W.-J (2011). "Force field measurements within the exclusion zone of water". Journal of Biological Physics. 38 (1): 113–120. doi:10.1007/s10867-011-9237-5. PMC   3285724 . PMID   23277674.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Iván, K., Huszár, I.; Kellermayer, M., Mártonfalvi, Z. (2014). "Exclusion-Zone Dynamics Explored with Microfluidics and Optical Tweezers". Entropy. 16 (8): 4322–4337. Bibcode:2014Entrp..16.4322H. doi: 10.3390/e16084322 .{{cite journal}}: CS1 maint: multiple names: authors list (link)

Related Research Articles

<span class="mw-page-title-main">Hydrophobe</span> Molecule or surface that has no attraction to water

In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.

<span class="mw-page-title-main">Spectroscopy</span> Study involving matter and electromagnetic radiation

Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.

<span class="mw-page-title-main">State of matter</span> Distinct forms that matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma. For a list of exotic states of matter, see the article List of states of matter.

<span class="mw-page-title-main">Surfactant</span> Substance that lowers the surface tension between a liquid and another material

Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. The word "surfactant" is a blend of surface-active agent, coined c. 1950. As they consist of a water-repellent and a water-attracting part, they enable water and oil to mix; they can form foam and facilitate the detachment of dirt.

<span class="mw-page-title-main">London dispersion force</span> Cohesive force between species

London dispersion forces are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are symmetrically distributed with respect to the nucleus. They are part of the van der Waals forces. The LDF is named after the German physicist Fritz London. They are the weakest intermolecular force.

<span class="mw-page-title-main">Surface energy</span> Excess energy at the surface of a material relative to its interior

In surface science, surface energy quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energetically favorable than the bulk of the material, otherwise there would be a driving force for surfaces to be created, removing the bulk of the material. The surface energy may therefore be defined as the excess energy at the surface of a material compared to the bulk, or it is the work required to build an area of a particular surface. Another way to view the surface energy is to relate it to the work required to cut a bulk sample, creating two surfaces. There is "excess energy" as a result of the now-incomplete, unrealized bonding between the two created surfaces.

<span class="mw-page-title-main">Quantum dot</span> Zero-dimensional, nano-scale semiconductor particles with novel optical and electronic properties

Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the conductance band and the valence band, or the transition between discrete energy states when the band structure is no longer well-defined in QDs.

<span class="mw-page-title-main">Adhesion</span> Molecular property

Adhesion is the tendency of dissimilar particles or surfaces to cling to one another.

Atomic coherence is the induced coherence between levels of a multi-level atomic system.

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule.

Hybrid solar cells combine advantages of both organic and inorganic semiconductors. Hybrid photovoltaics have organic materials that consist of conjugated polymers that absorb light as the donor and transport holes. Inorganic materials in hybrid cells are used as the acceptor and electron transporter in the structure. The hybrid photovoltaic devices have a potential for not only low-cost by roll-to-roll processing but also for scalable solar power conversion.

<span class="mw-page-title-main">Fritz Haber Institute of the Max Planck Society</span> German catalysis research institute

The Fritz Haber Institute of the Max Planck Society (FHI) is a science research institute located at the heart of the academic district of Dahlem, in Berlin, Germany.

<span class="mw-page-title-main">Water-in-water emulsion</span>

Water-in-water (W/W) emulsion is a system that consists of droplets of water-solvated molecules in another continuous aqueous solution; both the droplet and continuous phases contain different molecules that are entirely water-soluble. As such, when two entirely aqueous solutions containing different water-soluble molecules are mixed, water droplets containing predominantly one component are dispersed in water solution containing another component. Recently, such a water-in-water emulsion was demonstrated to exist and be stable from coalescence by the separation of different types of non-amphiphilic, but water-soluble molecular interactions. These molecular interactions include hydrogen bonding, pi stacking, and salt bridging. This w/w emulsion was generated when the different water-solvated molecular functional groups get segregated in an aqueous mixture consisting of polymer and liquid crystal molecules.

<span class="mw-page-title-main">Organic solar cell</span> Type of photovoltaic

An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.

The strength of metal oxide adhesion effectively determines the wetting of the metal-oxide interface. The strength of this adhesion is important, for instance, in production of light bulbs and fiber-matrix composites that depend on the optimization of wetting to create metal-ceramic interfaces. The strength of adhesion also determines the extent of dispersion on catalytically active metal. Metal oxide adhesion is important for applications such as complementary metal oxide semiconductor devices. These devices make possible the high packing densities of modern integrated circuits.

Emilio Del Giudice was an Italian theoretical physicist who worked in the field of condensed matter. Pioneer of string theory in the early 1970s, later on he became better known for his work with Giuliano Preparata at the Italian Institute for Nuclear Physics (INFN);

<span class="mw-page-title-main">Oleg Prezhdo</span> Ukrainian–American physical chemist (born 1970)

Oleg V. Prezhdo is a Ukrainian–American physical chemist whose research focuses on non-adiabatic molecular dynamics and time-dependent density functional theory (TDDFT). His research interests range from fundamental aspects of semi-classical and quantum-classical physics to excitation dynamics in condensed matter and biological systems. His research group focuses on the development of new theoretical models and computational tools aimed at understanding chemical reactivity and energy transfer at a molecular level in complex condensed phase environment. Since 2014, he is a professor of chemistry and of physics & astronomy at the University of Southern California.

The tribovoltaic effect is the effect of generating of tribo-current at a sliding semiconductors interface or sliding semiconductor and metal interface, which is firstly proposed by Wang et al. in 2018. When a P-type semiconductor slides over a N-type semiconductor, the energy “quantum” also named as “bindington” will be released at the interface due to the formation of new chemical bonds. The released energy can excite electron-hole pairs at the interface, which are further separated and moved from one side to the other side under the built-in electric field at the semiconductor interface, generating a direct current in external circuit.

The exclusion zone is a large stratum observed in pure liquid water, from which particles of other materials in suspension are repelled. It is observed next to the surface of solid materials, e.g. the walls of the container in which the liquid water is held, or solid specimens immersed in it, and also at the water/air interface. Several independent research groups have reported observations of the exclusion zone next to hydrophilic surfaces. Some research groups have reported the observation of the exclusion zone next to metal surfaces. The Exclusion zone has been observed using different techniques, e.g. birefringence, neutron radiography, nuclear magnetic resonance, and others, and it has potentially high importance in biology, and in engineering applications such as filtration and microfluidics.