The oxhydroelectric effect consists in the generation of voltage and electric current in pure liquid water, without any electrolyte, upon exposure to electromagnetic radiation in the infrared range, after creating a physical (not chemical) asymmetry in liquid water e.g. thanks to a strongly hydrophile polymer, such as Nafion. [1] [2] [3]
Since the publication of the first seminal research, other independent research has been published, which refer to this effect, in scientific peer reviewed, reputable journals (with impact factors higher than the median in the respective fields). [4] [5] [6] [7] [8]
The system can be described as a photovoltaic cell operating in the infrared electromagnetic range, based on liquid water instead of a semiconductor.
The model proposed by Roberto Germano and his collaborators, who have first observed the effect [1] [2] [3] is based on the known concept of the exclusion zone. The first observations of a different behaviour of water molecules close to the walls of its container date back to late ‘60s and early ‘70s, when Drost-Hansen, upon reviewing many experimental articles, came to the conclusion that interfacial water shows structural difference with respect to the bulk liquid water. [9] [10]
In 2006 Gerald Pollack published a seminal work on the exclusion zone [11] and those observations were subsequently reported by several other groups, [12] [13] which all report observations of a coherent water region created at the boundary between the surface of a hydrophilic material and the bulk water.
Further elaborating on the work of Pollack, the model describes liquid water as a system made of two phases: a matrix of non-coherent water molecules hosting many “Coherence Domains” (CDs), about 0.1 um in size, found in the exclusion zone, but also in the bulk volume. In this model the behaviour of the coherence domains is also considered as the cause for the formation of xerosydryle.
The two phases, are characterized by different thermodynamic parameters, and are in a stable non-equilibrium state.
The coherent phase should be described by a quantum state, and in particular a state oscillating between a fundamental state, where electrons are firmly bound (ionization energy of 12.60 eV), and an excited state characterized by a quasi-free electron configuration. The energy of the excited state is 12.06 eV, which means that only a small amount of energy as small as (12.60 - 12.06) eV = 0.54 eV (Infrared range) is sufficient to extract an electron.
Then, at a fixed temperature and for molecules density exceeding a threshold, the transition of the non-coherent water molecules to the coherence state is spontaneous because it is driving the system to a lower energy configuration. More exactly, the almost free electrons have to cross an energy barrier of (0.54 - Χ) eV, where Χ ~ 0.1 eV is the electric potential difference at the CD boundary with the non-coherent water. This small amount of energy, ~ 0.44 eV, necessary for the electron extraction, makes the coherent water a reservoir of quasi-free electrons that can be easily released by Infrared stimulation, or quantum tunnel effect or by small external perturbation.
The two water phases, with their different potentials behave as the two components of a photovoltaic cell based on semiconductors. Then, in the cell described in the patent, [3] one of the two sectors has sheets of hydrophilic material, which create (more) coherent domains in that sector, with respect to the other sector.
The research on the effect has started as a side project in Germano's "technology transfer company" Promete s.r.l. [14] and since 2023 it is conducted in Oxhy s.r.l. [15] , a startup created with the purpose to further develop this line of research.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fields of surface chemistry and surface physics. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces.
Coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Wave sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent.
London dispersion forces are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are symmetrically distributed with respect to the nucleus. They are part of the van der Waals forces. The LDF is named after the German physicist Fritz London. They are the weakest intermolecular force.
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the conductance band and the valence band, or the transition between discrete energy states when the band structure is no longer well-defined in QDs.
In physics, Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes-Raman scattering.
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another.
Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer synthesized in 1962 by Dr. Donald J. Connolly at the DuPont Experimental Station in Wilmington Delaware. Additional work on the polymer family was performed in the late 1960s by Dr. Walther Grot of DuPont. Nafion is a brand of the Chemours company. It is the first of a class of synthetic polymers with ionic properties that are called ionomers. Nafion's unique ionic properties are a result of incorporating perfluorovinyl ether groups terminated with sulfonate groups onto a tetrafluoroethylene (PTFE) backbone. Nafion has received a considerable amount of attention as a proton conductor for proton exchange membrane (PEM) fuel cells because of its excellent chemical and mechanical stability in the harsh conditions of this application.
In physics, atomic coherence is the induced coherence between levels of a multi-level atomic system and an electromagnetic field.
Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.
In mesoscopic physics, ballistic conduction is the unimpeded flow of charge carriers, or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey Newton's second law of motion at non-relativistic speeds.
Quantum biology is the study of applications of quantum mechanics and theoretical chemistry to aspects of biology that cannot be accurately described by the classical laws of physics. An understanding of fundamental quantum interactions is important because they determine the properties of the next level of organization in biological systems.
The European X-Ray Free-Electron Laser Facility is an X-ray research laser facility commissioned during 2017. The first laser pulses were produced in May 2017 and the facility started user operation in September 2017. The international project with twelve participating countries; nine shareholders at the time of commissioning, later joined by three other partners, is located in the German federal states of Hamburg and Schleswig-Holstein. A free-electron laser generates high-intensity electromagnetic radiation by accelerating electrons to relativistic speeds and directing them through special magnetic structures. The European XFEL is constructed such that the electrons produce X-ray light in synchronisation, resulting in high-intensity X-ray pulses with the properties of laser light and at intensities much brighter than those produced by conventional synchrotron light sources.
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.
Hydrophobicity scales are values that define the relative hydrophobicity or hydrophilicity of amino acid residues. The more positive the value, the more hydrophobic are the amino acids located in that region of the protein. These scales are commonly used to predict the transmembrane alpha-helices of membrane proteins. When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside lipid bilayer.
Super radiant emission or spontaneous coherent emission, is an emitted radiation with constant wave direction and rate that occurs in Fourier function. It is emitted when all electrons radiate in phase with each other, which generates the coherent radiation. It is emitted in a quantum mechanical system during a transition between two energy levels of molecules in a gas of dimension small compared to a wavelength.
Emilio Del Giudice was an Italian theoretical physicist who worked in the field of condensed matter. Pioneer of string theory in the early 1970s, later on he became better known for his work with Giuliano Preparata at the Italian Institute for Nuclear Physics (INFN);
The exclusion zone is a large stratum observed in pure liquid water, from which particles of other materials in suspension are repelled. It is observed next to the surface of solid materials, e.g. the walls of the container in which the liquid water is held, or solid specimens immersed in it, and also at the water/air interface. Several independent research groups have reported observations of the exclusion zone next to hydrophilic surfaces. Some research groups have reported the observation of the exclusion zone next to metal surfaces. The Exclusion zone has been observed using different techniques, e.g. birefringence, neutron radiography, nuclear magnetic resonance, and others, and it has potentially high importance in biology, and in engineering applications such as filtration and microfluidics.