PLUTO reactor

Last updated

PLUTO was a materials testing nuclear reactor housed at the Atomic Energy Research Establishment, a former Royal Air Force airfield at Harwell, Oxfordshire in the United Kingdom.

Contents

Background

PLUTO was one of five reactors on the site. The site was selected as the scientific center for research and development of UK's expanding nuclear programs. Designed by the United Kingdom Atomic Energy Authority (UKAEA), the reactor was built by Head Wrightson Processes Ltd, an industrial firm in Teesside, England. [1]

PLUTO was one of two high flux reactors; the first, DIDO, was its prototype. PLUTO was the second of three DIDO class reactors to become operational. PLUTO and DIDO were located at Harwell; the third, Dounreay (DMTR) was built in Caithness, Scotland. The development of multi-purpose type PLUTO reactors gave rise to many countries building their own materials testing reactors based on DIDO's design. On 27 October 1957, the PLUTO reactor was commissioned and operated for thirty three years before decommissioning in 1990.

Design

PLUTO was based on the design of DIDO and used enriched uranium metal fuel, and heavy water as both neutron moderator and primary coolant. The core was a cylinder with a diameter of 87.5 centimetres (34.4 in) and a height of approximately 61 centimetres (24 in). The radioactive shielding consisted of 0.65 centimetres (0.26 in) boral, 10.2 centimetres (4.0 in) lead, 45 centimetres (18 in) of iron shot concrete, and 120 centimetres (47 in) of barytes concrete. [1] There was a graphite neutron reflector surrounding the core. The fuel element was an eighty-per cent enriched uranium, U-235, alloyed with aluminum plates, producing a specific power of 3,850,000 kW/kg. The PLUTO reactor started operating at 10 MW thermal power but increased during upgrades to 25 MW during its operation. [2]

Tests Performed

The multipurpose PLUTO reactor had many diverse functions; testing materials for commercial reactors to investigating crystal structures. Its main functions were fuel production, materials testing and sample activation experiments which involved testing the effects of graphite behavior under irradiation. Materials testing at the Harwell site involved irradiating materials using the reactors. This happened in one of 3 locations, a Mark V hollow fuel element in the Pluto reactor, a flux position in DIDO, and the flux converter in PLUTO. The aim of the flux converter was to give the materials the spectrum of low spatial variation of neutron and gamma fluxes seen by a light-water reactor rather than the heavy-water reactor, PLUTO. [3] An experiment performed to test the effects of graphite behavior under irradiation revealed the effects of irradiation for 20–30 years in a civil reactor from materials tested in these reactors during the course of a few months. [4] Other activities and experiments carried out were:physics research such as neutron scattering, chemistry studies, and radioisotopes production used in medical facilities and other industries. Because the twin reactors, PLUTO and DIDO, worked on a continuous basis rotating in and out of operation, there was continued flow of short-lived radioisotopes for hospitals. The radioisotopes generated account for 70% of the UK radioisotopes sold on the international markets. [5]

Decommissioning

PLUTO reactor went critical in 1957 and reached its end of life in 1990. It is expected to be completely dismantled by 2024. [6] Decommissioning is carried out in three stages, as defined by the International Atomic Energy Agency (IAEA) Standards. It began with the shutdown of the reactor following closure of nuclear plant. The first stage was removing radioactive materials and operational waste. Second stage involved dismantling active and non-active plants but keeping building structure and the reactor shield intact. Stage three involved demolishing building structures, dismantling the reactor core and bio shield, and site cleanup of all radioactive waste to restore site for other purposes. [7] By 1994 and 1995, PLUTO was at stage two decommissioning [6]

See also

Related Research Articles

<span class="mw-page-title-main">Tuwaitha Nuclear Research Center</span> Nuclear facility site near Baghdad, Iraq

The Baghdad Nuclear Research Facility adjacent to the Tuwaitha "Yellow Cake Factory" or Tuwaitha Nuclear Research Center contains the remains of nuclear reactors bombed by Iran in 1980, Israel in 1981 and the United States in 1991. It was used as a storage facility for spent reactor fuel and industrial and medical wastes. The radioactive material would not be useful for a fission bomb, but could be used in a dirty bomb. Following the 2003 invasion of Iraq, the facility was heavily looted by hundreds of Iraqis, though it is unclear what was taken.

<span class="mw-page-title-main">Atomic Energy Research Establishment</span> Former UK nuclear power research and development site

The Atomic Energy Research Establishment (AERE) was the main centre for atomic energy research and development in the United Kingdom from 1946 to the 1990s. It was created, owned and funded by the British Government.

<span class="mw-page-title-main">Magnox</span> Type of nuclear reactor

Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The name comes from the magnesium-aluminium alloy, used to clad the fuel rods inside the reactor. Like most other "Generation I nuclear reactors", the Magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.

<span class="mw-page-title-main">United Kingdom Atomic Energy Authority</span> UK government research organisation

The United Kingdom Atomic Energy Authority is a UK government research organisation responsible for the development of fusion energy. It is an executive non-departmental public body of the Department for Energy Security and Net Zero (DESNZ).

<span class="mw-page-title-main">Dounreay</span> Location of two former nuclear research establishments in northern Scotland

Dounreay is a small settlement and the site of two large nuclear establishments on the north coast of Caithness in the Highland area of Scotland. It is on the A836 road nine miles west of Thurso.

<span class="mw-page-title-main">High Flux Australian Reactor</span> Australias first nuclear reactor

The High Flux Australian Reactor (HIFAR) was Australia's first nuclear reactor. It was built at the Australian Atomic Energy Commission Research Establishment at Lucas Heights, Sydney. The reactor was in operation between 1958 and 2007, when it was superseded by the Open-pool Australian lightwater reactor, also in Lucas Heights.

DIDO was a materials testing nuclear reactor at the Atomic Energy Research Establishment at Harwell, Oxfordshire in the United Kingdom. It used enriched uranium metal fuel, and heavy water as both neutron moderator and primary coolant. There was also a graphite neutron reflector surrounding the core. In the design phase, DIDO was known as AE334 after its engineering design number.

<span class="mw-page-title-main">Chapelcross nuclear power station</span> Decommissioned nuclear power plant in Scotland

Chapelcross nuclear power station is a former Magnox nuclear power station undergoing decommissioning. It is located in Annan in Dumfries and Galloway in southwest Scotland, and was in operation from 1959 to 2004. It was the sister plant to the Calder Hall nuclear power station plant in Cumbria, England; both were commissioned and originally operated by the United Kingdom Atomic Energy Authority. The primary purpose of both plants was to produce weapons-grade plutonium for the UK's nuclear weapons programme, but they also generated electrical power for the National Grid. Later in the reactors' lifecycle, as the UK slowed the development of the nuclear deterrent as the cold war came to a close, power production became the primary goal of reactor operation.

<span class="mw-page-title-main">Neutron activation</span> Induction of radioactivity by neutron radiation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons. Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

<span class="mw-page-title-main">Research reactor</span> Nuclear device not intended for power or weapons

Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.

<span class="mw-page-title-main">Reed Research Reactor</span>

The Reed Research Reactor (RRR) is a research nuclear reactor located on-campus at Reed College in Portland, Oregon. It is a pool-type TRIGA Mark I reactor, built by General Atomics in 1968 and operated since then under licence from the Nuclear Regulatory Commission. Maximum thermal output is 250 kW. The reactor has over 1,000 visitors each year and serves the Reed College departments of Physics and Chemistry, as well as other departments.

<span class="mw-page-title-main">Advanced Test Reactor</span> Idaho National Laboratory research neutron source

The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory, located east of Arco, Idaho. This reactor was designed and is used to test nuclear fuels and materials to be used in power plants, naval propulsion, research and advanced reactors. It can operate at a maximum thermal power of 250 MW and has a "Four Leaf Clover" core design that allows for a variety of testing locations. The unique design allows for different neutron flux conditions in various locations. Six of the test locations allow an experiment to be isolated from the primary cooling system, providing its own environment for temperature, pressure, flow and chemistry, replicating the physical environment while accelerating the nuclear conditions.

<span class="mw-page-title-main">Nuclear graphite</span> Graphite used as a reflector or moderator within a nuclear reactor

Nuclear graphite is any grade of graphite, usually synthetic graphite, manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reactors, due to its extreme purity and ability to withstand extremely high temperature.

<span class="mw-page-title-main">Graphite-moderated reactor</span> Type of nuclear reactor

A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel.

<span class="mw-page-title-main">Nuclear facilities in Iran</span>

Iran's nuclear program is made up of a number of nuclear facilities, including nuclear reactors and various nuclear fuel cycle facilities.

ETRR-1 or ET-RR-1, is the first nuclear reactor in Egypt supplied by the USSR in 1958. The reactor is owned and operated by Egyptian Atomic Energy Authority (AEA) at the Nuclear Research Center in Inshas, 40–60 kilometres (25–37 mi) northeast of Cairo.

ETRR-2 or ET-RR-2, or is the second nuclear reactor in Egypt supplied by the Argentine company Investigacion Aplicada (INVAP) in 1992. The reactor is owned and operated by Egyptian Atomic Energy Authority (EAEA) at the Nuclear Research Center in Inshas, 60 kilometres (37 mi) northeast of Cairo.

<span class="mw-page-title-main">Windscale Piles</span> Former air-cooled graphite-moderated nuclear reactors

The Windscale Piles were two air-cooled graphite-moderated nuclear reactors on the Windscale nuclear site in Cumberland on the north-west coast of England. The two reactors, referred to at the time as "piles", were built as part of the British post-war atomic bomb project and produced weapons-grade plutonium for use in nuclear weapons.

<span class="mw-page-title-main">FiR 1</span>

FiR 1 was Finland's first nuclear reactor. It was a research reactor that was located in the Otaniemi campus area in the city of Espoo. The TRIGA Mark II reactor had a thermal power of 250 kilowatts. It started operation in 1962, and it was permanently shut down in 2015. At first, the reactor was operated by Helsinki University of Technology (TKK), and since 1971 by VTT Technical Research Centre of Finland.

References

  1. 1 2 Bangash, M. Y. H. Structures for Nuclear Facilities. London: Springer, 2011. Print.
  2. Paul Mobbs."The Safety of the UKAEA Harwell Establishment and in particular the Safety of the Harwell Materials Testing Reactors".November/December, 1989. Web. 8 November 2014.< "Archived copy" (PDF). Archived from the original (PDF) on 10 November 2014. Retrieved 10 November 2014.{{cite web}}: CS1 maint: archived copy as title (link)>
  3. Kumar, Arvind S,. Gelles, Davis S. Effects of Radiation on Materials: 15th International Symposium, Philadelphia: ASTM. August 1992. Print.
  4. "Eyes' for Pluto Reactor." Journal of Electronics and Control 5.5 (1958): 439. Rpt. in Article CC:CCL. 5th ed. Vol. 5. N.p.: U of Central Florida, 1958. 439. TK7800 .J6 Bound. Web. 4 Nov. 2014.
  5. IAEA "Multipurpose Research Reactors" Symposium. July 1988. Web 30 October 2014.<http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/20/019/20019411.pdf>
  6. 1 2 UKAEA."DIDO and PLUTO Material Testing Reactors." Harwell Project Profiles (n.d.). Web. 4 Nov. 2014 < http://www.research-sites.com/UserFiles/File/Archive/Project%20Information/Harwell-dido-pluto.pdf Archived 24 September 2015 at the Wayback Machine >
  7. Lewis H. G. "International Approaches To Decommissioning Nuclear Facilities". Health and Safety Executive, 2000. Web. 8 November 2014 <http://www.hse.gov.uk/research/nuclear/decommission.pdf Archived 4 March 2016 at the Wayback Machine >

51°34′11″N1°19′41″W / 51.569708°N 1.32809°W / 51.569708; -1.32809