Packet concatenation

Last updated

Packet concatenation is a computer networking optimization that coalesces multiple packets under a single header. The use of packet containment reduces the overhead at the physical and link layers. [1]

See also

Related Research Articles

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

<span class="mw-page-title-main">Inverse multiplexer</span> Breaks a data stream into multiple lower data rate streams

An inverse multiplexer allows a data stream to be broken into multiple lower data rate communication links. An inverse multiplexer differs from a demultiplexer because the multiple output streams from the former stay inter-related, whereas those from the latter are unrelated. An inverse multiplexer is the opposite of a multiplexer in that it divides one high-speed link into multiple low-speed links, whereas a multiplexer combines multiple low-speed links into one high-speed link.

<span class="mw-page-title-main">Packet analyzer</span> Computer network equipment or software that analyzes network traffic

A packet analyzer, also known as packet sniffer, protocol analyzer, or network analyzer, is a computer program or computer hardware such as a packet capture appliance, that can intercept and log traffic that passes over a computer network or part of a network. Packet capture is the process of intercepting and logging traffic. As data streams flow across the network, the analyzer captures each packet and, if needed, decodes the packet's raw data, showing the values of various fields in the packet, and analyzes its content according to the appropriate RFC or other specifications.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

The RTP Control Protocol (RTCP) is a sister protocol of the Real-time Transport Protocol (RTP). Its basic functionality and packet structure is defined in RFC 3550. RTCP provides out-of-band statistics and control information for an RTP session. It partners with RTP in the delivery and packaging of multimedia data, but does not transport any media data itself.

<span class="mw-page-title-main">Paul Baran</span> Polish-American engineer

Paul Baran was a Polish-American engineer who was a pioneer in the development of computer networks. He was one of the two independent inventors of packet switching, which is today the dominant basis for data communications in computer networks worldwide, and went on to start several companies and develop other technologies that are an essential part of modern digital communication.

Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.

<span class="mw-page-title-main">Link aggregation</span> Using multiple network connections in parallel to increase capacity and reliability

In computer networking, link aggregation is the combining of multiple network connections in parallel by any of several methods. Link aggregation increases total throughput beyond what a single connection could sustain, and provides redundancy where all but one of the physical links may fail without losing connectivity. A link aggregation group (LAG) is the combined collection of physical ports.

<span class="mw-page-title-main">Metro Ethernet</span> Metropolitan area network based on Ethernet standards

A metropolitan-area Ethernet, Ethernet MAN, or metro Ethernet network is a metropolitan area network (MAN) that is based on Ethernet standards. It is commonly used to connect subscribers to a larger service network or for internet access. Businesses can also use metropolitan-area Ethernet to connect their own offices to each other.

Packet loss occurs when one or more packets of data travelling across a computer network fail to reach their destination. Packet loss is either caused by errors in data transmission, typically across wireless networks, or network congestion. Packet loss is measured as a percentage of packets lost with respect to packets sent.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (eNodeB).

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

A broadcast storm or broadcast radiation is the accumulation of broadcast and multicast traffic on a computer network. Extreme amounts of broadcast traffic constitute a "broadcast storm". It can consume sufficient network resources so as to render the network unable to transport normal traffic. A packet that induces such a storm is occasionally nicknamed a Chernobyl packet.

Frame-bursting is a communication protocol feature used at the link layer in communication networks to alter the transmission characteristics in order to benefit from higher throughput. It is a technique sometimes used in communication protocols for shared mediums to achieve higher throughput by allowing the transmitter to send a series of frames in succession without relinquishing control of the transmission medium. Related techniques used to achieve the same goal include fast frames wherein the inter-frame wait interval is reduced, and jumbo frames wherein the size of the frame is increased. Frame bursting may also benefit from packet aggregation. Communication protocols for shared mediums are designed to relinquish the medium and wait for a while after the transmission of a MAC layer frame in order to facilitate the fair use of the medium by multiple users. Frame bursting may be permissible in certain scenarios such as when the link is point-to-point or when the signal from other users is indistinguishable from noise. Frame bursting allows for more data packets per time interval at the cost of wait time for other users.

Concatenation is a computer programming operation that joins strings together.

In communication networks, cognitive network (CN) is a new type of data network that makes use of cutting edge technology from several research areas to solve some problems current networks are faced with. Cognitive network is different from cognitive radio (CR) as it covers all the layers of the OSI model.

LTE-WLAN aggregation (LWA) is a technology defined by the 3GPP. In LWA, a mobile handset supporting both LTE and Wi-Fi may be configured by the network to utilize both links simultaneously. It provides an alternative method of using LTE in unlicensed spectrum, which unlike LAA/LTE-U can be deployed without hardware changes to the network infrastructure equipment and mobile devices, while providing similar performance to that of LAA. Unlike other methods of using LTE and WLAN simultaneously, LWA allows using both links for a single traffic flow and is generally more efficient, due to coordination at lower protocol stack layers.

Hybrid Access Networks refer to a special architecture for broadband access networks where two different network technologies are combined to improve bandwidth. A frequent motivation for such Hybrid Access Networks to combine one xDSL network with a wireless network such as LTE. The technology is generic and can be applied to combine different types of access networks such as DOCSIS, WiMAX, 5G or satellite networks. The Broadband Forum has specified an architecture as a framework for the deployment of such converged networks.

References

  1. Kliazovich, Dzmitry; Granelli, Fabrizio (2007). "Packet concatenation at the IP level for performance enhancement in wireless local area networks". Wireless Networks. 14 (4): 519–529. doi:10.1007/s11276-006-0734-6. ISSN   1022-0038. S2CID   9566487.