Painlevé conjecture

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia
Jeff Xia's 5-body configuration consists of five point masses, with two pairs in eccentric elliptic orbits around each other and one mass oscillating forwards and backwards along the line of symmetry. Xia proved that for certain initial conditions the final mass will be accelerated to infinite velocity in finite time. This proves the Painleve conjecture for five bodies and upwards. Xia's 5-body configuration.png
Jeff Xia's 5-body configuration consists of five point masses, with two pairs in eccentric elliptic orbits around each other and one mass oscillating forwards and backwards along the line of symmetry. Xia proved that for certain initial conditions the final mass will be accelerated to infinite velocity in finite time. This proves the Painlevé conjecture for five bodies and upwards.

In physics, the Painlevé conjecture is a theorem about singularities among the solutions to the n-body problem: there are noncollision singularities for n  4. [1] [2]

Contents

The theorem was proven for n = 5 in 1988 by Jeff Xia [3] [4] and for n=4 in 2014 by Jinxin Xue. [5] [6]

Background and statement

Solutions of the n-body problem (where M are the masses and U denotes the gravitational potential) are said to have a singularity if there is a sequence of times converging to a finite where . That is, the forces and accelerations become infinite at some finite point in time.

A collision singularity occurs if tends to a definite limit when . If the limit does not exist the singularity is called a pseudocollision or noncollision singularity.

Paul Painlevé showed that for n = 3 any solution with a finite time singularity experiences a collision singularity. However, he failed at extending this result beyond 3 bodies. His 1895 Stockholm lectures end with the conjecture that

For n  4 the n-body problem admits noncollision singularities. [7] [8]

Development

Edvard Hugo von Zeipel proved in 1908 that if there is a collision singularity, then tends to a definite limit as , where is the moment of inertia. [9] This implies that a necessary condition for a noncollision singularity is that the velocity of at least one particle becomes unbounded (since the positions remain finite up to this point). [1]

Mather and McGehee managed to prove in 1975 that a noncollision singularity can occur in the co-linear 4-body problem (that is, with all bodies on a line), but only after an infinite number of (regularized) binary collisions. [10]

Donald G. Saari proved in 1977 that for almost all (in the sense of Lebesgue measure) initial conditions in the plane or space for 2, 3 and 4-body problems there are singularity-free solutions. [11]

In 1984, Joe Gerver gave an argument for a noncollision singularity in the planar 5-body problem with no collisions. [12] He later found a proof for the 3n body case. [13]

Finally, in his 1988 doctoral dissertation, Jeff Xia demonstrated a 5-body configuration that experiences a noncollision singularity. [3] [4]

Joe Gerver has given a heuristic model for the existence of 4-body singularities. [14]

In his 2013 doctoral thesis at University of Maryland, Jinxin Xue considered a simplified model for the planar four-body problem case of the Painlevé conjecture. Based on a model of Gerver, he proved that there is a Cantor set of initial conditions which lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all earlier collisions. In 2014, Xue extended his previous work and proved the conjecture for n=4. [15] [5] [6]

Due to the symmetry constraint, Xia's model is only valid for the 5-body problem. Gerver-Xue's model does not have such a constraint, and is likely to be generalized to the general N>4 body problem.

Related Research Articles

In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.

<span class="mw-page-title-main">Singular value decomposition</span> Matrix decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition.

<span class="mw-page-title-main">Rank–nullity theorem</span> In linear algebra, relation between 3 dimensions

The rank–nullity theorem is a theorem in linear algebra, which asserts:

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.

Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters. In general, the method provides improved efficiency in parameter estimation problems in exchange for a tolerable amount of bias.

<span class="mw-page-title-main">Boltzmann equation</span> Equation of statistical mechanics

The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.

In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.

<span class="mw-page-title-main">Three-body problem</span> Physics problem related to laws of motion and gravity

In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation.

Donald Gene Saari is an American mathematician, a Distinguished Professor of Mathematics and Economics and former director of the Institute for Mathematical Behavioral Sciences at the University of California, Irvine. His research interests include the n-body problem, the Borda count voting system, and application of mathematics to the social sciences.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

Florin Nicolae Diacu was a Romanian Canadian mathematician and author.

In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.

In applied mathematics, Wahba's problem, first posed by Grace Wahba in 1965, seeks to find a rotation matrix between two coordinate systems from a set of (weighted) vector observations. Solutions to Wahba's problem are often used in satellite attitude determination utilising sensors such as magnetometers and multi-antenna GPS receivers. The cost function that Wahba's problem seeks to minimise is as follows:

<span class="mw-page-title-main">Ordinary differential equation</span> Differential equation containing derivatives with respect to only one variable

In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations (PDEs) which may be with respect to more than one independent variable, and, less commonly, in contrast with stochastic differential equations (SDEs) where the progression is random.

Richard Paul McGehee is an American mathematician, who works on dynamical systems with special emphasis on celestial mechanics.

In mathematics, the Simon problems are a series of fifteen questions posed in the year 2000 by Barry Simon, an American mathematical physicist. Inspired by other collections of mathematical problems and open conjectures, such as the famous list by David Hilbert, the Simon problems concern quantum operators. Eight of the problems pertain to anomalous spectral behavior of Schrödinger operators, and five concern operators that incorporate the Coulomb potential.

Zhihong "Jeff" Xia is a Chinese-American mathematician.

References

  1. 1 2 Diacu, Florin N. (1993). "Painlevé's Conjecture". The Mathematical Intelligencer. 13 (2).
  2. Diacu, Florin; Holmes, Philip (1996). Celestial Encounters: The Origins of Chaos and Stability. Princeton University Press. ISBN   0-691-02743-9.
  3. 1 2 Xia, Zhihong (1992). "The Existence of Noncollision Singularities in Newtonian Systems". Annals of Mathematics . Second Series. 135 (3): 411–468. doi:10.2307/2946572. JSTOR   2946572.
  4. 1 2 Saari, Donald G.; Xia, Zhihong (Jeff) (1993). "Off to Infinity in Finite Time". Notices of the AMS. 42 (5): 538–546.
  5. 1 2 Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem". arXiv: 1409.0048 [math.DS].
  6. 1 2 Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". Acta Mathematica . 224 (2): 253–388. doi: 10.4310/ACTA.2020.v224.n2.a2 .
  7. Painlevé, P. (1897). Lecons sur la théorie analytique des équations différentielles. Paris: Hermann.
  8. Oeuvres de Paul Painlevé. Vol. Tome I. Paris: Ed. Centr. Nat. Rech. Sci. 1972.
  9. von Zeipel, H. (1908). "Sur les singularités du problème des corps". Arkiv för Matematik, Astronomi och Fysik. 4: 1–4.
  10. Mather, J.; McGehee, R. (1975). "Solutions of the collinear four-body problem which become unbounded in finite time". In Moser, J. (ed.). Dynamical Systems Theory and Applications . Berlin: Springer-Verlag. pp.  573–589. ISBN   3-540-07171-7.
  11. Saari, Donald G. (1977). "A global existence theorem for the four-body problem of Newtonian mechanics". J. Differential Equations. 26 (1): 80–111. Bibcode:1977JDE....26...80S. doi: 10.1016/0022-0396(77)90100-0 .
  12. Gerver, J. L. (1984). "A possible model for a singularity without collisions in the five-body problem". J. Diff. Eq. 52 (1): 76–90. Bibcode:1984JDE....52...76G. doi: 10.1016/0022-0396(84)90136-0 .
  13. Gerver, J. L. (1991). "The existence of pseudocollisions in the plane". J. Diff. Eq. 89 (1): 1–68. Bibcode:1991JDE....89....1G. doi: 10.1016/0022-0396(91)90110-U .
  14. Gerver, Joseph L. (2003). "Noncollision Singularities: Do Four Bodies Suffice?". Exp. Math. 12 (2): 187–198. doi:10.1080/10586458.2003.10504491. S2CID   23816314.
  15. Xue, J.; Dolgopyat, D. (2016). "Non-Collision Singularities in the Planar Two-Center-Two-Body Problem". Commun. Math. Phys. 345 (3): 797–879. arXiv: 1307.2645 . Bibcode:2016CMaPh.345..797X. doi:10.1007/s00220-016-2688-6. S2CID   119274578.