Paleoclimate Modelling Intercomparison Project

Last updated

The Paleoclimate Modelling Intercomparison Project is a project, somewhat along the lines of AMIP or CMIP, to coordinate and encourage the systematic study of atmospheric general circulation models (AGCMs) and to assess their ability to simulate large climate changes such as those that occurred in the distant past. Project goals include identifying common responses of AGCMs to imposed paleoclimate "boundary conditions," understanding the differences in model responses, comparing model results with paleoclimate data, and providing AGCM results for use in helping in the analysis and interpretation of paleoclimate data. PMIP is initially focussing on the mid-Holocene (6,000 years before present) and the Last Glacial Maximum (21,000 yr BP) because climatic conditions were remarkably different at those times, and because relatively large amounts of paleoclimate data exist for these periods. The major "forcing" factors are also relatively well known at these times. Some of the paleoclimate features simulated by models in previous studies seem consistent with paleoclimatic data, but others do not. One of the goals of PMIP is to determine which results are model-dependent. The PMIP experiments are limited to studying the equilibrium response of the atmosphere (and such surface characteristics as snow cover) to changes in boundary conditions (e.g., insolation, ice-sheet distribution, CO2 concentration, etc.)


Related Research Articles

<span class="mw-page-title-main">Jet stream</span> Fast-flowing atmospheric air current

Jet streams are fast flowing, narrow, meandering air currents in the atmospheres of the Earth, Venus, Jupiter, Saturn, Uranus, and Neptune. On Earth, the main jet streams are located near the altitude of the tropopause and are westerly winds. Jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including opposite to the direction of the remainder of the jet.

In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample of a population in which all individuals, or instances, were not equally likely to have been selected. If this is not accounted for, results can be erroneously attributed to the phenomenon under study rather than to the method of sampling.

In software quality assurance, performance testing is in general a testing practice performed to determine how a system performs in terms of responsiveness and stability under a particular workload. It can also serve to investigate, measure, validate or verify other quality attributes of the system, such as scalability, reliability and resource usage.

<span class="mw-page-title-main">General circulation model</span> Type of climate model

A general circulation model (GCM) is a type of climate model. It employs a mathematical model of the general circulation of a planetary atmosphere or ocean. It uses the Navier–Stokes equations on a rotating sphere with thermodynamic terms for various energy sources. These equations are the basis for computer programs used to simulate the Earth's atmosphere or oceans. Atmospheric and oceanic GCMs are key components along with sea ice and land-surface components.

<span class="mw-page-title-main">Intertropical Convergence Zone</span> Meteorological phenomenon

The Intertropical Convergence Zone, known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the thermal equator though its specific position varies seasonally. When it lies near the geographic Equator, it is called the near-equatorial trough. Where the ITCZ is drawn into and merges with a monsoonal circulation, it is sometimes referred to as a monsoon trough, a usage that is more common in Australia and parts of Asia.

Atmospheric Model Intercomparison Project (AMIP) is a standard experimental protocol for global atmospheric general circulation models (AGCMs). It provides a community-based infrastructure in support of climate model diagnosis, validation, intercomparison, documentation and data access. Virtually the entire international climate modeling community has participated in this project since its inception in 1990.

climateprediction.net BOINC based volunteer computing project researching climate models

climateprediction.net (CPDN) is a volunteer computing project to investigate and reduce uncertainties in climate modelling. It aims to do this by running hundreds of thousands of different models using the donated idle time of ordinary personal computers, thereby leading to a better understanding of how models are affected by small changes in the many parameters known to influence the global climate.

<span class="mw-page-title-main">Last Glacial Maximum</span> Most recent time during the Last Glacial Period that ice sheets were at their greatest extent

The Last Glacial Maximum (LGM), also referred to as the Last Glacial Coldest Period, was the most recent time during the Last Glacial Period that ice sheets were at their greatest extent 26 ka - 20 ka ago. Ice sheets covered much of Northern North America, Northern Europe, and Asia and profoundly affected Earth's climate by causing a major expansion of deserts, along with a large drop in sea levels.

PMIP may refer to:

<span class="mw-page-title-main">Climate sensitivity</span> Change in Earths temperature caused by changes in atmospheric carbon dioxide concentrations

Climate sensitivity is a measure of how much Earth's surface will cool or warm after a specified factor causes a change in its climate system, such as how much it will warm for a doubling in the atmospheric carbon dioxide concentration. In technical terms, climate sensitivity is the average change in global mean surface temperature in response to a radiative forcing, which drives a difference between Earth's incoming and outgoing energy. Climate sensitivity is a key measure in climate science, and a focus area for climate scientists, who want to understand the ultimate consequences of anthropogenic global warming.

<span class="mw-page-title-main">European Project for Ice Coring in Antarctica</span> Research project

The European Project for Ice Coring in Antarctica (EPICA) is a multinational European project for deep ice core drilling in Antarctica. Its main objective is to obtain full documentation of the climatic and atmospheric record archived in Antarctic ice by drilling and analyzing two ice cores and comparing these with their Greenland counterparts (GRIP and GISP). Evaluation of these records will provide information about the natural climate variability and mechanisms of rapid climatic changes during the last glacial epoch.

<span class="mw-page-title-main">Biological Dynamics of Forest Fragments Project</span>

The Biological Dynamics of Forest Fragments Project is a large-scale ecological experiment looking at the effects of habitat fragmentation on tropical rainforest. The experiment which was established in 1979 is located near Manaus in the Brazilian Amazon rainforest. The project is jointly managed by the Amazon Biodiversity Center and the Brazilian Institute for Research in the Amazon (INPA).

<span class="mw-page-title-main">Climate: Long range Investigation, Mapping, and Prediction</span>

Climate: Long range Investigation, Mapping, and Prediction, known as CLIMAP, was a major research project of the 1970s and 80s to produce a map of climate conditions during the Last Glacial Maximum. The project was funded by the National Science Foundation as part of the International Decade of Ocean Exploration (1970s) and is based in large part of the collection and analysis of a very large number of sediment cores to create a snapshot of conditions across the oceans. The CLIMAP project also resulted in maps of vegetative zones across the continents and the estimated extent of glaciation at the time. Most CLIMAP results aim to describe the Earth as it was 18 thousand years ago, but there was also an analysis to look at conditions during the previous interglacial—120 thousand years ago.

Gap analysis is a tool used in wildlife conservation to identify gaps in conservation lands or other wildlands where significant plant and animal species and their habitat or important ecological features occur.

<span class="mw-page-title-main">Global Energy and Water Exchanges</span>

The Global Energy and Water Exchanges Project is an international research project and a core project of the World Climate Research Programme (WCRP).

Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecological populations, communities, or ecosystems will change in the future in response to environmental factors such as climate change. The goal of the approach is to provide natural resource managers with information to anticipate and respond to short and long-term climate conditions.

<span class="mw-page-title-main">Planetary boundaries</span> Limits not to be exceeded if humanity wants to survive in a safe ecosystem

Planetary boundaries are a framework to describe limits to the impacts of human activities on the Earth system. Beyond these limits, the environment may not be able to self-regulate anymore. This would mean the Earth system would leave the period of stability of the Holocene, in which human society developed. Crossing a planetary boundary comes at the risk of abrupt environmental change. The framework is based on scientific evidence that human actions, especially those of industrialized societies since the Industrial Revolution, have become the main driver of global environmental change. According to the framework, "transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental-scale to planetary-scale systems."

Ocean general circulation models (OGCMs) are a particular kind of general circulation model to describe physical and thermodynamical processes in oceans. The oceanic general circulation is defined as the horizontal space scale and time scale larger than mesoscale. They depict oceans using a three-dimensional grid that include active thermodynamics and hence are most directly applicable to climate studies. They are the most advanced tools currently available for simulating the response of the global ocean system to increasing greenhouse gas concentrations. A hierarchy of OGCMs have been developed that include varying degrees of spatial coverage, resolution, geographical realism, process detail, etc.

<span class="mw-page-title-main">Marine Isotope Stage 5</span> Marine isotope stage in the geologic temperature record, between 130,000 and 80,000 years ago

Marine Isotope Stage 5 or MIS 5 is a marine isotope stage in the geologic temperature record, between 130,000 and 80,000 years ago. Sub-stage MIS 5e, called the Eemian or Ipswichian, covers the last major interglacial period before the Holocene, which extends to the present day. Interglacial periods which occurred during the Pleistocene are investigated to better understand present and future climate variability. Thus, the present interglacial, the Holocene, is compared with MIS 5 or the interglacials of Marine Isotope Stage 11.

<span class="mw-page-title-main">Land change modeling</span> Geographic and ecological field of study

Land change models (LCMs) describe, project, and explain changes in and the dynamics of land use and land-cover. LCMs are a means of understanding ways that humans change the Earth's surface in the past, present, and future.