In mathematics, a paramodular group is a special sort of arithmetic subgroup of the symplectic group. It is a generalization of the Siegel modular group, and has the same relation to polarized abelian varieties that the Siegel modular group has to principally polarized abelian varieties. It is the group of automorphisms of Z2n preserving a non-degenerate skew symmetric form. The name "paramodular group" is often used to mean one of several standard matrix representations of this group. The corresponding group over the reals is called the parasymplectic group and is conjugate to a (real) symplectic group. A paramodular form is a Siegel modular form for a paramodular group.
Paramodular groups were introduced by Conforto (1952) and named by Shimura (1958 , section 8).
There are two conventions for writing the paramodular group as matrices. In the first (older) convention the matrix entries are integers but the group is not a subgroup of the symplectic group, while in the second convention the paramodular group is a subgroup of the usual symplectic group (over the rationals) but its coordinates are not always integers. These two forms of the symplectic group are conjugate in the general linear group.
Any nonsingular skew symmetric form on Z2n is equivalent to one given by a matrix
where F is an n by n diagonal matrix whose diagonal elements Fii are positive integers with each dividing the next. So any paramodular group is conjugate to one preserving the form above, in other words it consists of the matrices
of GL2n(Z) such that
The conjugate of the paramodular group by the matrix
(where I is the identity matrix) lies in the symplectic group Sp2n(Q), since
though its entries are not in general integers. This conjugate is also often called the paramodular group.
Paramodular group of degree n=2 are subgroups of GL4(Q) so can be represented as 4 by 4 matrices. There are at least 3 ways of doing this used in the literature. This section describes how to represent it as a subgroup of Sp4(Q) with entries that are not necessarily integers.
Any non-degenerate skew symmetric form on Z4 is up to isomorphism and scalar multiples equivalent to one given as above by the matrix
In this case one form of the paramodular group consists of the symplectic matrices of the form
where each * stands for an integer. The fact that this matrix is symplectic forces some further congruence conditions, so in fact the paramodular group consists of the symplectic matrices of the form
The paramodular group in this case is generated by matrices of the forms
for integers x, y, and z.
Some authors use the matrix instead of which gives similar results except that the rows and columns get permuted; for example, the paramodular group then consists of the symplectic matrices of the form
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition
In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.
In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:
In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution.
In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic.
In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation
In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.
In mathematics, the Cayley transform, named after Arthur Cayley, is any of a cluster of related things. As originally described by Cayley (1846), the Cayley transform is a mapping between skew-symmetric matrices and special orthogonal matrices. The transform is a homography used in real analysis, complex analysis, and quaternionic analysis. In the theory of Hilbert spaces, the Cayley transform is a mapping between linear operators.
In mathematics, the Siegel upper half-space of degree g is the set of g × g symmetric matrices over the complex numbers whose imaginary part is positive definite. It was introduced by Siegel (1939). It is the symmetric space associated to the symplectic group Sp(2g, R).
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.
In mathematics, a Hamiltonian matrix is a 2n-by-2n matrix A such that JA is symmetric, where J is the skew-symmetric matrix
In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the n × n identity matrix. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any invertible matrix multiplied by its inverse is the identity.
In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.
In mathematics, the special linear group SL(2, R) or SL2(R) is the group of 2 × 2 real matrices with determinant one:
In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.
In mathematics, an invariant convex cone is a closed convex cone in a Lie algebra of a connected Lie group that is invariant under inner automorphisms. The study of such cones was initiated by Ernest Vinberg and Bertram Kostant.
In mathematics, an Igusa group or Igusa subgroup is a subgroup of the Siegel modular group defined by some congruence conditions. They were introduced by Igusa (1964).
{{citation}}
: CS1 maint: location missing publisher (link)