Paratacamite

Last updated
Paratacamite
Paratacamite-231241.jpg
Paratacamite from the Cornwall, England
General
Category Halide mineral
Formula
(repeating unit)
Cu3(Cu,Zn)(OH)6Cl2
IMA symbol Pata [1]
Strunz classification III / D.01-55
Crystal system Trigonal
Crystal class Rhombohedral
Unit cell a = 13,654, c = 14,041;
Identification
Formula mass 58.433 g/mol
ColorGreen
Cleavage Very good
Fracture Conchoidal
Mohs scale hardness3
Luster Vitreous
Streak Green
Diaphaneity Transparent
Specific gravity 3.74
Density 3.74g/cm3
Solubility Acid-soluble
References [2]

Paratacamite is a mineral in the halide minerals category. Its chemical formula is Cu3(Cu,Zn)(OH)6Cl2. Its name is derived from its association with atacamite.

It is found in Chile, Botallack Mine in Cornwall, Broken Hill, Australia, and in Italy in Capo Calamita on the island of Elba. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Atacamite</span>

Atacamite is a copper halide mineral: a copper(II) chloride hydroxide with formula Cu2Cl(OH)3. It was first described for deposits in the Atacama Desert of Chile in 1802 by Dmitri de Gallitzin. The Atacama Desert is also the namesake of the mineral.

<span class="mw-page-title-main">Volborthite</span>

Volborthite is a mineral containing copper and vanadium, with the formula Cu3V2O7(OH)2·2H2O. Found originally in 1838 in the Urals, it was first named knaufite but was later changed to volborthite for Alexander von Volborth (1800–1876), a Russian paleontologist.

<span class="mw-page-title-main">Botallackite</span> Halide mineral

Botallackite, chemical formula Cu2(OH)3Cl is a secondary copper mineral, named for its type locality at the Botallack Mine, St Just in Penwith, Cornwall. It is polymorphous with atacamite, paratacamite and clinoatacamite.

<span class="mw-page-title-main">Halide mineral</span> Minerals with a dominant fluoride, chloride, bromide, or iodide anion

Halide minerals are those minerals with a dominant halide anion. Complex halide minerals may also have polyatomic anions.

<span class="mw-page-title-main">Boleite</span>

Boleite is a complex halide mineral with formula: KPb26Ag9Cu24(OH)48Cl62. It was first described in 1891 as an oxychloride mineral. It is an isometric mineral which forms in deep-blue cubes. There are numerous minerals related to boleite, such as pseudoboleite, cumengite, and diaboleite, and these all have the same complex crystal structure. They all contain bright-blue cubic forms and are formed in altered zones of lead and copper deposits, produced during the reaction of chloride bearing solutions with primary sulfide minerals.

<span class="mw-page-title-main">Calumetite</span>

Calumetite is a natural rarely occurring mineral. It was discovered in 1963 at the Centennial Mine near Calumet, Michigan, United States. Calumetite was first discovered along with anthonyite. It has a chemical formula of Cu(OH,Cl)
2
•2(H
2
O)
.

<span class="mw-page-title-main">Ashburtonite</span>

Ashburtonite is a rare lead copper silicate-bicarbonate mineral with formula: HPb4Cu2+4Si4O12(HCO3)4(OH)4Cl.

<span class="mw-page-title-main">Dicopper chloride trihydroxide</span> Chemical compound

Dicopper chloride trihydroxide is the chemical compound with the formula Cu2(OH)3Cl. It is often referred to as tribasic copper chloride (TBCC), copper trihydroxyl chloride or copper hydroxychloride. It is a greenish crystalline solid encountered in mineral deposits, metal corrosion products, industrial products, art and archeological objects, and some living systems. It was originally manufactured on an industrial scale as a precipitated material used as either a chemical intermediate or a fungicide. Since 1994, a purified, crystallized product has been produced at the scale of thousands of tons per year, and used extensively as a nutritional supplement for animals.

<span class="mw-page-title-main">Leightonite</span>

Leightonite is a rare sulfate mineral with formula of K2Ca2Cu(SO4)4•2H2O.

<span class="mw-page-title-main">Kröhnkite</span>

Kröhnkite ( Na2Cu(SO4)2•2H2O ) is a rare copper sulfate mineral named after B. Kröhnke who first researched it. Kröhnkite may be replaced by Saranchinaite, the anhydrous form of the mineral, if heated to temperatures above 200 °C (392 °F).

<span class="mw-page-title-main">Diaboleite</span>

Diaboleite is a blue-colored mineral with formula Pb2CuCl2(OH)4. It was discovered in England in 1923 and named diaboleite, from the Greek word διά and boleite, meaning "distinct from boleite". The mineral has since been found in a number of countries.

<span class="mw-page-title-main">Paramelaconite</span> Oxide mineral

Paramelaconite is a rare, black-colored copper(I,II) oxide mineral with formula CuI
2
CuII
2
O3 (or Cu4O3). It was discovered in the Copper Queen Mine in Bisbee, Arizona, about 1890. It was described in 1892 and more fully in 1941. Its name is derived from the Greek word for "near" and the similar mineral melaconite, now known as tenorite.

<span class="mw-page-title-main">Spertiniite</span>

Spertiniite is a rare copper hydroxide mineral. Chemically it is copper(II) hydroxide with formula Cu(OH)2. It occurs as blue to blue green tabular orthorhombic crystal aggregates in a secondary alkaline environment altering chalcocite. Associated minerals include chalcocite, atacamite, native copper, diopside, grossular and vesuvianite.

<span class="mw-page-title-main">Piypite</span>

Piypite is a rare potassium, copper sulfate mineral with formula: K2Cu2O(SO4)2. It crystallizes in the tetragonal system and occurs as needlelike crystals and masses. Individual crystals are square in cross-section and often hollow. It is emerald green to black in color with a vitreous to greasy luster.

<span class="mw-page-title-main">Ammineite</span>

Ammineite is the first recognized mineral containing ammine groups. Its formula is [CuCl2(NH3)2]. The mineral is chemically pure. It was found in a guano deposit in Chile. At the same site other ammine-containing minerals were later found:

Feodosiyite is a very rare chloride mineral, just recently approved, with the formula Cu11Mg2Cl18(OH)8•16H2O. Its structure is unique. Feodosiyite comes from the Tolbachik volcano, famous for many rare fumarolic minerals. Chemically similar minerals, chlorides containing both copper and magnesium, include haydeeite, paratacamite-(Mg) and tondiite.

Iyoite is a very rare manganese copper chloride hydroxide mineral with the formula MnCuCl(OH)3. Iyoite is a new member of the atacamite group, and it an analogue of botallackite characterized in manganese and copper ordering. Iyoite is monoclinic (space group P21/m). It is chemically similar to misakiite. Both minerals come from the Ohku mine in the Ehime prefecture, Japan.

Chrysothallite is a rare thallium-bearing chloride mineral with the formula K6Cu6Tl3+Cl17(OH)4•H2O. Chrysothallite is unique in being only the second mineral with essential trivalent thallium, a feature shared with natural thallium(III) oxide, avicennite. Another examples of natural thallium chlorides are steropesite, Tl3BiCl6, and lafossaite, TlCl. Chrysothallite is one of numerous fumarolic minerals discovered among fumarolic sites of the Tolbachik volcano, Kamchatka, Russia The mineral is named in allusion to its colour and thallium content.

<span class="mw-page-title-main">Chalconatronite</span>

Chalconatronite is a carbonate mineral and rare secondary copper mineral that contains copper, sodium, carbon, oxygen, and hydrogen, its chemical formula is Na2Cu(CO3)2•3(H2O). Chalconatronite is partially soluble in water, and only decomposes, although chalconatronite is soluble while cold, in dilute acids. The name comes from the mineral's compounds, copper ("chalcos" in Greek) and natron, naturally forming sodium carbonate. The mineral is thought to be formed by water carrying alkali carbonates (possibly from soil) reacting with bronze. Similar minerals include malachite, azurite, and other copper carbonates. Chalconatronite has also been found and recorded in Australia, Germany, and Colorado.

Euchlorine (KNaCu3(SO4)3O) is a rare emerald-green colored sulfate mineral found naturally occurring as a sublimate in fumaroles around volcanic eruptions. It was first discovered in fumaroles of the 1868 eruption at Mount Vesuvius in Campania, Italy by Arcangelo Scacchi. The name 'euchlorine' comes from the Greek word εΰχλωρος meaning "pale green" in reference to the mineral's color, other reported spellings include euclorina, euchlorin, and euchlorite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 "Paratacamite: Paratacamite mineral information and data". mindat.org. Retrieved 2017-09-20.