This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space. A particle in a spherically symmetric potential will behave accordingly to said potential and can therefore be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds. [1]
In the general time-independent case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form:
Here, is the mass of the particle, is the momentum operator, and the potential depends only on the vector magnitude of the position vector, that is, the radial distance from the origin (hence the spherical symmetry of the problem).
To describe a particle in a spherically symmetric system, it is convenient to use spherical coordinates; denoted by , and . The time-independent Schrödinger equation for the system is then a separable, partial differential equation. This means solutions to the angular dimensions of the equation can be found independently of the radial dimension. This leaves an ordinary differential equation in terms only of the radius, , which determines the eigenstates for the particular potential, .
If solved by separation of variables, the eigenstates of the system will have the form:
in which the spherical angles and represent the polar and azimuthal angle, respectively. Those two factors of are often grouped together as spherical harmonics, so that the eigenfunctions take the form:
The differential equation which characterises the function is called the radial equation.
The kinetic energy operator in spherical polar coordinates is:
The spherical harmonics satisfy
Substituting this into the Schrödinger equation we get a one-dimensional eigenvalue equation,
This equation can be reduced to an equivalent 1-D Schrödinger equation by substituting , where satisfies
which is precisely the one-dimensional Schrödinger equation with an effective potential given by
where . The correction to the potential V(r) is called the centrifugal barrier term.
If , then near the origin, .
Since the Hamiltonian is spherically symmetric, it is said to be invariant under rotation, ie:
Since angular momentum operators are generators of rotation, applying the Baker-Campbell-Hausdorff Lemma we get:
Since this equation holds for all values of , we get that , or that every angular momentum component commutes with the Hamiltonian.
Since and are such mutually commuting operators that also commute with the Hamiltonian, the wavefunctions can be expressed as or where is used to label different wavefunctions.
Since also commutes with the Hamiltonian, the energy eigenvalues in such cases are always independent of .
Combined with the fact that differential operators only act on the functions of and , it shows that if the solutions are assumed to be separable as , the radial wavefunction can always be chosen independent of values. Thus the wavefunction is expressed as: [2]
There are five cases of special importance:
The solutions are outlined in these cases, which should be compared to their counterparts in cartesian coordinates, cf. particle in a box.
Let us now consider . Introducing the dimensionless variables
the equation becomes a Bessel equation for :
where regular solutions for positive energies are given by so-called Bessel functions of the first kind so that the solutions written for are the so-called spherical Bessel function
.
The solutions of the Schrödinger equation in polar coordinates in vacuum are thus labelled by three quantum numbers: discrete indices ℓ and m, and k varying continuously in :
These solutions represent states of definite angular momentum, rather than of definite (linear) momentum, which are provided by plane waves .
Consider the potential for and elsewhere - that is, inside a sphere of radius the potential is equal to and it is zero outside the sphere. A potential with such a finite discontinuity is called a square potential. [3]
We first consider bound states, i.e. states which display the particle mostly inside the box (confined states). Those have an energy less than the potential outside the sphere, i.e., they have negative energy. Also worth noticing is that unlike Coulomb potential, featuring an infinite number of discrete bound states, the spherical square well has only a finite (if any) number because of its finite range.
The resolution essentially follows that of the vacuum case above with normalization of the total wavefunction added, solving two Schrödinger equations — inside and outside the sphere — of the previous kind, i.e., with constant potential. The following constraints must hold for a normalizable, physical wavefunction:
The first constraint comes from the fact that Neumann and Hankel functions are singular at the origin. The physical requirement that must be defined everywhere selected Bessel function of the first kind over the other possibilities in the vacuum case. For the same reason, the solution will be of this kind inside the sphere:
Note that for bound states, . Bound states bring the novelty as compared to the vacuum case now that . This, along with the third constraint, selects the Hankel function of the first kind as the only converging solution at infinity (the singularity at the origin of these functions does not matter since we are now outside the sphere):
The second constraint on continuity of at along with normalization allows the determination of constants and . Continuity of the derivative (or logarithmic derivative for convenience) requires quantization of energy.
In case where the potential well is infinitely deep, so that we can take inside the sphere and outside, the problem becomes that of matching the wavefunction inside the sphere (the spherical Bessel functions) with identically zero wavefunction outside the sphere. Allowed energies are those for which the radial wavefunction vanishes at the boundary. Thus, we use the zeros of the spherical Bessel functions to find the energy spectrum and wavefunctions. Calling the kth zero of , we have:
so that the problem is reduced to the computations of these zeros , typically by using a table or calculator, as these zeros are not solvable for the general case.
In the special case (spherical symmetric orbitals), the spherical Bessel function is , which zeros can be easily given as . Their energy eigenvalues are thus:
The potential of a 3D isotropic harmonic oscillator is
An N-dimensional isotropic harmonic oscillator has the energies
i.e., is a non-negative integral number; is the (same) fundamental frequency of the modes of the oscillator. In this case , so that the radial Schrödinger equation becomes,
Introducing
and recalling that , we will show that the radial Schrödinger equation has the normalized solution,
where the function is a generalized Laguerre polynomial in of order .
The normalization constant is,
The eigenfunction is associated with energy , where
This is the same result as the quantum harmonic oscillator, with .
First we transform the radial equation by a few successive substitutions to the generalized Laguerre differential equation, which has known solutions: the generalized Laguerre functions. Then we normalize the generalized Laguerre functions to unity. This normalization is with the usual volume element r2 dr.
First we scale the radial coordinate
and then the equation becomes
with .
Consideration of the limiting behavior of v(y) at the origin and at infinity suggests the following substitution for v(y),
This substitution transforms the differential equation to
where we divided through with , which can be done so long as y is not zero.
If the substitution is used, , and the differential operators become
and
The expression between the square brackets multiplying becomes the differential equation characterizing the generalized Laguerre equation (see also Kummer's equation):
with .
Provided is a non-negative integral number, the solutions of this equations are generalized (associated) Laguerre polynomials
From the conditions on follows: (i) and (ii) and are either both odd or both even. This leads to the condition on given above.
Remembering that , we get the normalized radial solution:
The normalization condition for the radial wave function is:
Substituting , gives and the equation becomes:
By making use of the orthogonality properties of the generalized Laguerre polynomials, this equation simplifies to:
Hence, the normalization constant can be expressed as:
Other forms of the normalization constant can be derived by using properties of the gamma function, while noting that and are both of the same parity. This means that is always even, so that the gamma function becomes:
where we used the definition of the double factorial. Hence, the normalization constant is also given by:
A hydrogenic (hydrogen-like) atom is a two-particle system consisting of a nucleus and an electron. The two particles interact through the potential given by Coulomb's law:
where
In order to simplify the Schrödinger equation, we introduce the following constants that define the atomic unit of energy and length:
where is the reduced mass in the limit. Substitute and into the radial Schrödinger equation given above. This gives an equation in which all natural constants are hidden,
Two classes of solutions of this equation exist:
(i) is negative, the corresponding eigenfunctions are square-integrable and the values of are quantized (discrete spectrum).
(ii) is non-negative, every real non-negative value of is physically allowed (continuous spectrum), the corresponding eigenfunctions are non-square integrable. Considering only class (i) solutions restricts the solutions to wavefunctions which are bound states, in contrast to the class (ii) solutions that are known as scattering states.
For class (i) solutions with negative W the quantity is real and positive. The scaling of , i.e., substitution of gives the Schrödinger equation:
For the inverse powers of x are negligible and the normalizable (and therefore, physical) solution for large is . Similarly, for the inverse square power dominates and the physical solution for small is xℓ+1. Hence, to obtain a full range solution we substitute
The equation for becomes,
Provided is a non-negative integer, this equation has polynomial solutions written as
which are generalized Laguerre polynomials of order . The energy becomes
The principal quantum number satisfies . Since , the total radial wavefunction is
with normalization which absorbs extra terms from
via [4]
The corresponding energy is
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference.
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:
In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation:
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.
The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.
The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.
A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.
In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.
Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.
In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.