Pascal's rule

Last updated

In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k,

Contents

where is a binomial coefficient; one interpretation of the coefficient of the xk term in the expansion of (1 + x)n. There is no restriction on the relative sizes of n and k, [1] since, if n < k the value of the binomial coefficient is zero and the identity remains valid.

Pascal's rule can also be viewed as a statement that the formula

solves the linear two-dimensional difference equation

over the natural numbers. Thus, Pascal's rule is also a statement about a formula for the numbers appearing in Pascal's triangle.

Pascal's rule can also be generalized to apply to multinomial coefficients.

Combinatorial proof

Illustrates combinatorial proof:
(
4
1
)
+
(
4
2
)
=
(
5
2
)
.
{\displaystyle {\binom {4}{1}}+{\binom {4}{2}}={\binom {5}{2}}.} Pascal's rule 4c1 plus 4c2 equals 5c2.svg
Illustrates combinatorial proof:

Pascal's rule has an intuitive combinatorial meaning, that is clearly expressed in this counting proof. [2] :44

Proof. Recall that equals the number of subsets with k elements from a set with n elements. Suppose one particular element is uniquely labeled X in a set with n elements.

To construct a subset of k elements containing X, include X and choose k1 elements from the remaining n1 elements in the set. There are such subsets.

To construct a subset of k elements not containing X, choose k elements from the remaining n1 elements in the set. There are such subsets.

Every subset of k elements either contains X or not. The total number of subsets with k elements in a set of n elements is the sum of the number of subsets containing X and the number of subsets that do not contain X, .

This equals ; therefore, .

Algebraic proof

Alternatively, the algebraic derivation of the binomial case follows.

Generalization

Pascal's rule can be generalized to multinomial coefficients. [2] :144 For any integer p such that , and ,

where is the coefficient of the term in the expansion of .

The algebraic derivation for this general case is as follows. [2] :144 Let p be an integer such that , and . Then

See also

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4,

In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members. If the set has n elements, the number of k-combinations, denoted by or , is equal to the binomial coefficient

In mathematics, Pascal's triangle is a triangular array of the binomial coefficients arising in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy.

<span class="mw-page-title-main">Lah number</span> Mathematical sequence

In mathematics, the (signed and unsigned) Lah numbers are coefficients expressing rising factorials in terms of falling factorials and vice versa. They were discovered by Ivo Lah in 1954. Explicitly, the unsigned Lah numbers are given by the formula involving the binomial coefficient

In mathematics, the falling factorial is defined as the polynomial

In mathematics, a multiset is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that element in the multiset. As a consequence, an infinite number of multisets exist which contain only elements a and b, but vary in the multiplicities of their elements:

Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno, although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician Louis François Antoine Arbogast had stated the formula in a calculus textbook, which is considered to be the first published reference on the subject.

In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials.

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the MacLaurin series for the function , where and . Explicitly,

<span class="mw-page-title-main">Pascal's pyramid</span>

In mathematics, Pascal's pyramid is a three-dimensional arrangement of the trinomial numbers, which are the coefficients of the trinomial expansion and the trinomial distribution. Pascal's pyramid is the three-dimensional analog of the two-dimensional Pascal's triangle, which contains the binomial numbers and relates to the binomial expansion and the binomial distribution. The binomial and trinomial numbers, coefficients, expansions, and distributions are subsets of the multinomial constructs with the same names.

Sperner's theorem, in discrete mathematics, describes the largest possible families of finite sets none of which contain any other sets in the family. It is one of the central results in extremal set theory. It is named after Emanuel Sperner, who published it in 1928.

In combinatorics, Vandermonde's identity is the following identity for binomial coefficients:

In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for each side of a k-sided die rolled n times. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories.

In mathematics, the Gaussian binomial coefficients are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as or , is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian .

<span class="mw-page-title-main">Central binomial coefficient</span> Sequence of numbers ((2n) choose (n))

In mathematics the nth central binomial coefficient is the particular binomial coefficient

In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. The idea of the classification is credited to Gian-Carlo Rota, and the name was suggested by Joel Spencer.

In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient by a prime number p in terms of the base p expansions of the integers m and n.

In mathematical area of combinatorics, the q-Pochhammer symbol, also called the q-shifted factorial, is the product

In the context of combinatorial mathematics, stars and bars is a graphical aid for deriving certain combinatorial theorems. It was popularized by William Feller in his classic book on probability. It can be used to solve many simple counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins.

References

  1. Mazur, David R. (2010), Combinatorics / A Guided Tour, Mathematical Association of America, p. 60, ISBN   978-0-88385-762-5
  2. 1 2 3 Brualdi, Richard A. (2010), Introductory Combinatorics (5th ed.), Prentice-Hall, ISBN   978-0-13-602040-0

Bibliography

This article incorporates material from Pascal's triangle on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

This article incorporates material from Pascal's rule proof on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.