PatchMatch

Last updated
A comparison showing flowers (bottom right) removed from a photo using PatshMatsh PatchMatch.jpg
A comparison showing flowers (bottom right) removed from a photo using PatсhMatсh

PatchMatch is an algorithm used to quickly find correspondences (or matches) between small square regions (or patches) of an image. It has various applications in image editing, such as reshuffling or removing objects from images or altering their aspect ratios without cropping or noticeably stretching them. PatchMatch was first presented in a 2011 paper by researchers at Princeton University. [1]

Contents

Algorithm

The goal of the algorithm is to find the patch correspondence by defining a nearest-neighbor field (NNF) as a function of offsets, which is over all possible matches of patch (location of patch centers) in image A, for some distance function of two patches . So, for a given patch coordinate in image and its corresponding nearest neighbor in image , is simply . However, if we search for every point in image , the work will be too hard to complete. So the following algorithm is done in a randomized approach in order to accelerate the calculation speed. The algorithm has three main components. Initially, the nearest-neighbor field is filled with either random offsets or some prior information. Next, an iterative update process is applied to the NNF, in which good patch offsets are propagated to adjacent pixels, followed by random search in the neighborhood of the best offset found so far. Independent of these three components, the algorithm also uses a coarse-to-fine approach by building an image pyramid to obtain the better result.

Initialization

When initializing with random offsets, we use independent uniform samples across the full range of image . This algorithm avoids using an initial guess from the previous level of the pyramid because in this way the algorithm can avoid being trapped in local minima [ clarification needed ].

Iteration

After initialization, the algorithm attempted to perform iterative process of improving the . The iterations examine the offsets in scan order (from left to right, top to bottom), and each undergoes propagation followed by random search.

Propagation

We attempt to improve using the known offsets of and , assuming that the patch offsets are likely to be the same. That is, the algorithm will take new value for to be . So if has a correct mapping and is in a coherent region , then all of below and to the right of will be filled with the correct mapping. Alternatively, on even iterations, the algorithm search for different direction, fill the new value to be .

Let , we attempt to improve by testing a sequence of candidate offsets at an exponentially decreasing distance from

where is a uniform random in , is a large window search radius which will be set to maximum picture size, and is a fixed ratio often assigned as 1/2. This part of the algorithm allows the to jump out of local minimum through random process.

Halting criterion

The often used halting criterion is set the iteration times to be about 4~5. Even with low iteration, the algorithm works well.

See also

Related Research Articles

<span class="mw-page-title-main">Supervised learning</span> Machine learning paradigm

In machine learning, supervised learning (SL) is a paradigm where a model is trained using input objects and desired output values, which are often human-made labels. The training process builds a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to accurately determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured via a generalization error.

<span class="mw-page-title-main">Multidimensional scaling</span> Set of related ordination techniques used in information visualization

Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual cases of a data set. MDS is used to translate distances between each pair of objects in a set into a configuration of points mapped into an abstract Cartesian space.

In data mining and statistics, hierarchical clustering is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories:

The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, image stitching, 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving.

<span class="mw-page-title-main">Newton's method in optimization</span> Method for finding stationary points of a function

In calculus, Newton's method is an iterative method for finding the roots of a differentiable function , which are solutions to the equation . However, to optimize a twice-differentiable , our goal is to find the roots of . We can therefore use Newton's method on its derivative to find solutions to , also known as the critical points of . These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function .

In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method. It was first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. Most often, it is used for classification, as a k-NN classifier, the output of which is a class membership. An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.

In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems. Like the related Davidon–Fletcher–Powell method, BFGS determines the descent direction by preconditioning the gradient with curvature information. It does so by gradually improving an approximation to the Hessian matrix of the loss function, obtained only from gradient evaluations via a generalized secant method.

The Kaczmarz method or Kaczmarz's algorithm is an iterative algorithm for solving linear equation systems . It was first discovered by the Polish mathematician Stefan Kaczmarz, and was rediscovered in the field of image reconstruction from projections by Richard Gordon, Robert Bender, and Gabor Herman in 1970, where it is called the Algebraic Reconstruction Technique (ART). ART includes the positivity constraint, making it nonlinear.

In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search. It differs from conventional hashing techniques in that hash collisions are maximized, not minimized. Alternatively, the technique can be seen as a way to reduce the dimensionality of high-dimensional data; high-dimensional input items can be reduced to low-dimensional versions while preserving relative distances between items.

Shape context is a feature descriptor used in object recognition. Serge Belongie and Jitendra Malik proposed the term in their paper "Matching with Shape Contexts" in 2000.

A kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average.

In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is generated as a function of time, e.g., prediction of prices in the financial international markets. Online learning algorithms may be prone to catastrophic interference, a problem that can be addressed by incremental learning approaches.

Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. As with other boosting methods, a gradient-boosted trees model is built in stages, but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function.

In data mining and machine learning, kq-flats algorithm is an iterative method which aims to partition m observations into k clusters where each cluster is close to a q-flat, where q is a given integer.

Manifold alignment is a class of machine learning algorithms that produce projections between sets of data, given that the original data sets lie on a common manifold. The concept was first introduced as such by Ham, Lee, and Saul in 2003, adding a manifold constraint to the general problem of correlating sets of high-dimensional vectors.

In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data. It is structurally related to the expectation–maximization (EM) algorithm. k-SVD can be found widely in use in applications such as image processing, audio processing, biology, and document analysis.

Proximal gradientmethods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable. One such example is regularization of the form

In machine learning, multiple-instance learning (MIL) is a type of supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept.

The multiplicative weights update method is an algorithmic technique most commonly used for decision making and prediction, and also widely deployed in game theory and algorithm design. The simplest use case is the problem of prediction from expert advice, in which a decision maker needs to iteratively decide on an expert whose advice to follow. The method assigns initial weights to the experts, and updates these weights multiplicatively and iteratively according to the feedback of how well an expert performed: reducing it in case of poor performance, and increasing it otherwise. It was discovered repeatedly in very diverse fields such as machine learning, optimization, theoretical computer science, and game theory.

Graph cut optimization is a combinatorial optimization method applicable to a family of functions of discrete variables, named after the concept of cut in the theory of flow networks. Thanks to the max-flow min-cut theorem, determining the minimum cut over a graph representing a flow network is equivalent to computing the maximum flow over the network. Given a pseudo-Boolean function , if it is possible to construct a flow network with positive weights such that

References

  1. "The Patchmatch Randomized Matching Algorithm For Image Manipulation – Communications of the ACM". 2011-11-01. Retrieved 2024-11-30.