Path computation element

Last updated

In computer networks, a path computation element (PCE) is a system component, application, or network node that is capable of determining and finding a suitable route for conveying data between a source and a destination. [1]

Contents

Description

Routing can be subject to a set of constraints, such as quality of service (QoS), policy, or price. Constraint-based path computation is a strategic component of traffic engineering in MPLS, GMPLS and Segment Routing networks. It is used to determine the path through the network that traffic should follow, and provides the route for each label-switched path (LSP) that is set up.

Path computation has previously been performed either in a management system or at the head end of each LSP. But path computation in large, multi-domain networks may be very complex and may require more computational power and network information than is typically available at a network element, yet may still need to be more dynamic than can be provided by a management system.

Thus, a PCE is an entity capable of computing paths for a single or set of services. A PCE might be a network node, network management station, or dedicated computational platform that is resource-aware and has the ability to consider multiple constraints for sophisticated path computation. PCE applications compute label-switched paths for MPLS and GMPLS traffic engineering. The various components of the PCE architecture are in the process of being standardized by the IETF's PCE Working Group. [2]

PCE represents a vision of networks that separates route computations from the signaling of end-to-end connections and from actual packet forwarding. There is a basic tutorial on PCE as presented at ISOCORE's MPLS2008 conference [3] and a tutorial on advanced PCE as presented at ISOCORE's SDN/MPLS 2014 conference. [4]

Since the early days, the PCE architecture has evolved considerably to encompass more sophisticated concepts and allow application to more complicated network scenarios. This evolution includes Hierarchical PCE (H-PCE) [5] and both Stateful and Active PCE. [6]

A potential deployment of PCE separates the computation element from the client (the PCC) that request computation services. Communications between the PCE and PCC are achieved using the Path Computation Element Communication Protocol (PCEP) [7] which runs over the Transmission Control Protocol (TCP).

As the architecture has evolved, new protocol extensions have been developed to add functionality to support new applications and the new architectural elements. These developments are tracked by the PACE project [8] which is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 619712.

The PACE project has developed a primer for those interested in PCE. It can be downloaded without charge from the PACE website. [9]

PCE extensions

There are several PCE extensions to achieve different goals. For example:

Related Research Articles

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

The Resource Reservation Protocol (RSVP) is a transport layer protocol designed to reserve resources across a network using the integrated services model. RSVP operates over an IPv4 or IPv6 and provides receiver-initiated setup of resource reservations for multicast or unicast data flows. It does not transport application data but is similar to a control protocol, like Internet Control Message Protocol (ICMP) or Internet Group Management Protocol (IGMP). RSVP is described in RFC 2205.

Label Distribution Protocol (LDP) is a protocol in which routers capable of Multiprotocol Label Switching (MPLS) exchange label mapping information. Two routers with an established session are called LDP peers and the exchange of information is bi-directional. LDP is used to build and maintain label-switched path (LSP) databases that are used to forward traffic through MPLS networks.

Bidirectional Forwarding Detection (BFD) is a network protocol that is used to detect faults between two routers or switches connected by a link. It provides low-overhead detection of faults even on physical media that doesn't support failure detection of any kind, such as Ethernet, virtual circuits, tunnels and MPLS label-switched paths.

Constraint-based Routing Label Distribution Protocol (CR-LDP) is a control protocol used in some computer networks. As of February 2003, the IETF MPLS working group deprecated CR-LDP and decided to focus purely on RSVP-TE.

Automatically Switched Optical Network (ASON) is a concept for the evolution of transport networks which allows for dynamic policy-driven control of an optical or SDH network based on signaling between a user and components of the network. Its aim is to automate the resource and connection management within the network. The IETF defines ASON as an alternative/supplement to NMS based connection management.

Automatic Switched Transport Network (ASTN) allows traffic paths to be set up through a switched network automatically. The term ASTN replaces the term ASON and is often used interchangeably with GMPLS. This is not completely correct as GMPLS is a family of protocols, but ASON/ASTN is an optical/transport network architecture. The requirements of the ASON/ASTN architecture can be satisfied using GMPLS protocols developed by the IETF or by GMPLS protocols that have been modified by the ITU. Furthermore, the GMPLS protocols are applicable to optical and non-optical networks, and can be used in transport or client networks. Thus, GMPLS is a wider concept than ASTN.

Resource Reservation Protocol - Traffic Engineering (RSVP-TE) is an extension of the Resource Reservation Protocol (RSVP) for traffic engineering. It supports the reservation of resources across an IP network. Applications running on IP end systems can use RSVP to indicate to other nodes the nature of the packet streams they want to receive. RSVP runs on both IPv4 and IPv6.

MPLS Fast Reroute is a local restoration network resiliency mechanism. It is actually a feature of resource reservation protocol (RSVP) traffic engineering (RSVP-TE). In MPLS local protection each label-switched path (LSP) passing through a facility is protected by a backup path which originates at the node immediately upstream to that facility.

Adrian Farrel is a British engineer and author, specialising in developing computer network protocols for the Internet. He is active in the Internet Engineering Task Force.

Yakov Rekhter is a well-known network protocol designer and software programmer. He was heavily involved in internet protocol development, and its predecessors, from their early stages.

Label switching is a technique of network relaying to overcome the problems perceived by traditional IP-table switching. Here, the switching of network packets occurs at a lower level, namely the data link layer rather than the traditional network layer.

In telecommunications, Multiprotocol Label Switching - Transport Profile (MPLS-TP) is a variant of the MPLS protocol that is used in packet switched data networks. MPLS-TP is the product of a joint Internet Engineering Task Force (IETF) / International Telecommunication Union Telecommunication Standardization Sector (ITU-T) effort to include an MPLS Transport Profile within the IETF MPLS and PWE3 architectures to support the capabilities and functionalities of a packet transport network.

Yet Another Next Generation is a data modeling language for the definition of data sent over network management protocols such as the NETCONF and RESTCONF. The YANG data modeling language is maintained by the NETMOD working group in the Internet Engineering Task Force (IETF) and initially was published as RFC 6020 in October 2010, with an update in August 2016. The data modeling language can be used to model both configuration data as well as state data of network elements. Furthermore, YANG can be used to define the format of event notifications emitted by network elements and it allows data modelers to define the signature of remote procedure calls that can be invoked on network elements via the NETCONF protocol. The language, being protocol independent, can then be converted into any encoding format, e.g. XML or JSON, that the network configuration protocol supports.

Generalized Multi-Protocol Label Switching (GMPLS) is a protocol suite extending MPLS to manage further classes of interfaces and switching technologies other than packet interfaces and switching, such as time-division multiplexing, layer-2 switching, wavelength switching and fiber-switching.

<span class="mw-page-title-main">Wavelength switched optical network</span>

Wavelength switched optical network (WSON) is a type of telecommunications network.

Path protection in telecommunications is an end-to-end protection scheme used in connection oriented circuits in different network architectures to protect against inevitable failures on service providers’ network that might affect the services offered to end customers. Any failure occurred at any point along the path of a circuit will cause the end nodes to move/pick the traffic to/from a new route. Finding paths with protection, especially in elastic optical networks, was considered a difficult problem, but an efficient and optimal algorithm was proposed.

Segment routing, a form of computer networking, is a modern variant of source routing that is being developed within the SPRING and IPv6 working groups of the IETF. In a segment routed network, an ingress node may prepend a header to packets that contain a list of segments, which are instructions that are executed on subsequent nodes in the network. These instructions may be forwarding instructions, such as an instruction to forward a packet to a specific destination or interface.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

References

  1. RFC 4655, "A Path Computation Element (PCE)-Based Architecture"
  2. IETF's Working Group, "Path Computation Element (pce)" Archived 2009-07-10 at the Wayback Machine
  3. Basic PCE tutorial "PCE Tutorial"
  4. Advanced PCE tutorial "Advanced PCE Tutorial"
  5. RFC 6805 "Hierarchical PCE"
  6. RFC 7399 "Unanswered Questions in the Path Computation Element Architecture"
  7. RFC 5440 "Path Computation Element Communications Protocol"
  8. PACE "PACE: Next Steps in PAth Computation Element (PCE) Architectures"
  9. PCE Primer "PACE project PCE Primer"
  10. M. Domínguez-Dorado, José-Luis González-Sánchez, J. Domingo-Pascual. Libro de actas de las VII Jornadas de Ingeniería Telemática (JITEL'08) Págs. 80–86. ISBN 978-84-612-5474-3. Alcalá de Henares (ESPAÑA), Septiembre de 2008. "Descubrimiento de PCE inter-AS: una aportación a la computación de LSP en sistemas multidominio" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)[ permanent dead link ]
  11. M. Domínguez-Dorado, José-Luis González-Sánchez, J. Domingo-Pascual. Proceedings of the 13th International Telecommunications Network Strategy and Planning Symposium (NETWORKS'08). pp. 1–7. IEEE catalog number CFP08568-USB. ISBN 978-963-8111-68-5. DOI 10.1109/NETWKS.2008.4763712. Budapest (HUNGARY), October, 2008. (2008). PILEP: a contribution to PCE-based interdomain path computation (PDF). pp. 1–17. doi:10.1109/NETWKS.2008.4763712. hdl:2117/12929. ISBN   978-963-8111-68-5. S2CID   18470823. Archived from the original (PDF) on 2013-04-10.{{cite book}}: CS1 maint: multiple names: authors list (link)
  12. M. Domínguez-Dorado, José-Luis González-Sánchez, J. Domingo-Pascual, J. Carmona-Murillo. Proceedings of the V Iberoamerican Conference on Telematics (CITA'09). pp. 14–21. ISBN 978-84-613-2679-2. Gijón (SPAIN), May, 2009. "RI-CUBE: Dotando al PCE de información abstracta de ingeniería de tráfico interdominio" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)[ permanent dead link ]

Specifications