Path of least resistance

Last updated
Hikers choose the easy way to cross hills Cartoon mountain pass symbolizing path of least resistance.png
Hikers choose the easy way to cross hills

The path of least resistance is the physical or metaphorical pathway that provides the least resistance to forward motion by a given object or entity, among a set of alternative paths.[ not verified in body ] The concept is often used to describe why an object or entity takes a given path.[ not verified in body ] The way in which water flows is often given as an example for the idea.[ not verified in body ]

Contents

Description

Bicycle traffic barrier used to slow down cyclists circumvented by a detour in the form of a desire path, thereby showing a literal path of least resistance Path of least resistance.jpg
Bicycle traffic barrier used to slow down cyclists circumvented by a detour in the form of a desire path, thereby showing a literal path of least resistance

In physics, the "path of least resistance" is a heuristic from folk physics that can sometimes, in very simple situations, describe approximately what happens. It is an approximation of the tendency to the least energy state. [1] Other examples are "what goes up must come down" (gravity) and "heat goes from hot to cold" (second law of thermodynamics). But these simple descriptions are not derived from laws of physics and in more complicated cases these heuristics will fail to give even approximately correct results.

In electrical circuits, for example, the current always follows all available paths, and in some simple cases the "path of least resistance" will take up most of the current, but this will not be generally true in even slightly more complicated circuits. It may seem for example, that if there are three paths of approximately equal resistance, the majority of the current will flow down one of the three paths. However, due to electrons repelling each other, the total path of least resistance is in fact to have approximate equal current flowing through each path. The reason for this is that three paths made of equally conductive wire will have a total resistance that is one-third of the single path. In conclusion, the current is always distributed over all possible paths inversely proportional to their resistance.

The path of least resistance is also used to describe certain human behaviors, although with much less specificity than in the strictly physical sense. In these cases, resistance is often used as a metaphor for personal effort or confrontation; a person taking the path of least resistance avoids these. In library science and technical writing, information is ideally arranged for users according to the principle of least effort, or the "path of least resistance". Recursive navigation systems are an example of this.

The path of least resistance applies on a local, not global, reference. For example, water always flows downhill, regardless of whether briefly flowing uphill will help it gain a lower final altitude (with certain exceptions such as superfluids and siphons). In physics, this phenomenon allows the formation of potential wells, where potential energy is stored because of a barrier restricting flow to a lower energy state.

See also

Related Research Articles

<span class="mw-page-title-main">Electric current</span> Flow of electric charge

An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge carriers, which may be one of several types of particles, depending on the conductor. In electric circuits the charge carriers are often electrons moving through a wire. In semiconductors they can be electrons or holes. In an electrolyte the charge carriers are ions, while in plasma, an ionized gas, they are ions and electrons.

<span class="mw-page-title-main">Electrical network</span> Assemblage of connected electrical elements

An electrical network is an interconnection of electrical components or a model of such an interconnection, consisting of electrical elements. An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits. Linear electrical networks, a special type consisting only of sources, linear lumped elements, and linear distributed elements, have the property that signals are linearly superimposable. They are thus more easily analyzed, using powerful frequency domain methods such as Laplace transforms, to determine DC response, AC response, and transient response.

<span class="mw-page-title-main">Ohm's law</span> Law of electrical current and voltage

Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the three mathematical equations used to describe this relationship:

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

<span class="mw-page-title-main">Bernoulli's principle</span> Principle relating to fluid dynamics

Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.

<span class="mw-page-title-main">Electromagnetic induction</span> Production of voltage by a varying magnetic field

Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.

Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k.

<span class="mw-page-title-main">Fermi level</span> Quantity in solid state thermodynamics

The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by μ or EF for brevity. The Fermi level does not include the work required to remove the electron from wherever it came from. A precise understanding of the Fermi level—how it relates to electronic band structure in determining electronic properties; how it relates to the voltage and flow of charge in an electronic circuit—is essential to an understanding of solid-state physics.

In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form. For example, transfer of energy as heat is dissipative because it is a transfer of energy other than by thermodynamic work or by transfer of matter, and spreads previously concentrated energy. Following the second law of thermodynamics, in conduction and radiation from one body to another, the entropy varies with temperature, but never decreases in an isolated system.

In electronics, a linear regulator is a voltage regulator used to maintain a steady voltage. The resistance of the regulator varies in accordance with both the input voltage and the load, resulting in a constant voltage output. The regulating circuit varies its resistance, continuously adjusting a voltage divider network to maintain a constant output voltage and continually dissipating the difference between the input and regulated voltages as waste heat. By contrast, a switching regulator uses an active device that switches on and off to maintain an average value of output. Because the regulated voltage of a linear regulator must always be lower than input voltage, efficiency is limited and the input voltage must be high enough to always allow the active device to reduce the voltage by some amount.

<span class="mw-page-title-main">Lumped-element model</span> Simplification of a physical system into a network of discrete components

The lumped-element model is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems, mechanical multibody systems, heat transfer, acoustics, etc. This is in contrast to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities.

In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. Action and the variational principle are used in Feynman's quantum mechanics and in general relativity. For systems with small values of action similar to the Planck constant, quantum effects are significant.

<span class="mw-page-title-main">Current source</span> Electronic component delivering stable electric current regardless of voltage

A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it.

<span class="mw-page-title-main">Magnetic circuit</span> Closed loop path containing a magnetic flux

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

<span class="mw-page-title-main">Superposition principle</span> Fundamental physics principle stating that physical solutions of linear systems are linear

The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X, and input B produces response Y, then input (A + B) produces response (X + Y).

<span class="mw-page-title-main">Hydraulic analogy</span> Widely used analogy for explaining electrical circuits

Electronic-hydraulic analogies are the representation of electronic circuits by hydraulic circuits. Since electric current is invisible and the processes in play in electronics are often difficult to demonstrate, the various electronic components are represented by hydraulic equivalents. Electricity was originally understood to be a kind of fluid, and the names of certain electric quantities are derived from hydraulic equivalents.

This glossary of engineering terms is a list of definitions about the major concepts of engineering. Please see the bottom of the page for glossaries of specific fields of engineering.

This glossary of physics is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusive glossaries concerning related fields of science and technology, see Glossary of chemistry terms, Glossary of astronomy, Glossary of areas of mathematics, and Glossary of engineering.

Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the former is much longer than the latter. Albert Einstein showed that the magnetic field arises through the relativistic motion of the electric field and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a quantum field in quantum electrodynamics.

This glossary of engineering terms is a list of definitions about the major concepts of engineering. Please see the bottom of the page for glossaries of specific fields of engineering.

References

  1. David Weissman (1 February 2012). Cage, The: Must, Should, and Ought from Is. SUNY Press. p. 68. ISBN   978-0-7914-8119-6.