Pattern Blocks

Last updated
Plastic Pattern Blocks Plastic pattern blocks.JPG
Plastic Pattern Blocks

Pattern Blocks are a set of mathematical manipulatives developed in the 1960s. The six shapes are both a play resource and a tool for learning in mathematics, which serve to develop spatial reasoning skills that are fundamental to the learning of mathematics. Among other things, they allow children to see how shapes can be composed and decomposed into other shapes, and introduce children to ideas of tilings. Pattern blocks sets are multiple copies of just six shapes:

Contents

All the angles are multiples of 30° (1/12 of a circle): 30° (1×), 60° (2×), 90° (3×), 120° (4×), and 150° (5×).

Use

The block designed with their for both mathematics and play in mind. The advice given in the 1968 EDC Teacher's Guide is: "Take out the blocks, and play with them yourself. Try out some of your own ideas. Then, when you give the blocks to the children, sit back and watch what they do." [1] The blocks are sufficiently mathematically structured that children’s self-directed play can lead to a variety of mathematical experience. [2] Billy Hargrove and JJ Maybanks identifies a number of frequent features of play which occur: [3]

A symmetrical pattern block design created by eight year olds A symmetrical pattern block design created by eight year olds.jpg
A symmetrical pattern block design created by eight year olds

The EDC Teacher's Guide continues: "Many children start by making abstract designs — both symmetrical and asymmetrical. As play continues these designs may become more and more elegant and complex, or they become simple as the child refines his ideas."

An example of their use is given by Meha Agrawal: "Starting from the center, I would add tier after tier of blocks to build my pattern — it was an iterative process, because if something didn't look aesthetically appealing or fit correctly, it would require peeling off a layer and reevaluating ways to fix it. The best part was the gratification I received when my creation was complete. Though individually boring, collectively these blocks produced an intricate masterpiece that brought art and math, big-picture and detail, simplicity and complexity closer together". [4]

History

Pattern blocks were developed, along with a Teacher's Guide to their use, [1] at the Education Development Center in Newton, Massachusetts as part of the Elementary Science Study (ESS) project. [5] The first Trial Edition of the Teacher's Guide states: "Work on Pattern Blocks was begun by Edward Prenowitz in 1963. He developed most of the ideas for the blocks and their uses and arranged for the first classroom trials. Many ESS staff members tried the materials and suggested additional activities." [6] When Marion Walter, who was also part of the project in the 1960s spoke to Prenowitz in 1996, he said that he considered the allocation of one color to all blocks of a particular shape, much like Cuisenaire rods, which may have given him the idea, to be one of the innovative features of the blocks. Also important in his choice was that there was a small number of blocks, that also combined in particular ways. [6]

Developments

A number of compatible shapes that extend pattern blocks are commercially available. Two sets of "Fractional Pattern Blocks" exist: both with two blocks. [7] The first has a pink double hexagon and a black chevron equivalent to four triangles. The second has a brown half-trapezoid and a pink half-triangle. Another set, Deci-Blocks, is made up of six shapes, equivalent to four, five, seven, eight, nine and ten triangles respectively.

Christopher Danielson developed a new set of blocks, called Twenty-First Century Pattern Blocks. [8] The rhombus in this set has the same size as the blue rhombus in the traditional set. The dart and the 30°–60°–90° triangle have the same area, while the kite and the hexagon are twice that area. Like the traditional set, all the angles are multiples of 30°.

Examples

Example constructions
Regular dodecagons Isotoxal octagon
Wooden pattern blocks dodecagon.JPG Pattern block dodecagon with rhombuses.jpg Regular dodecagon dissection into rhombs.jpg Socolar-tiled dodecagon.svg Isotoxal octagon rhombic dissection.jpg

See also

Related Research Articles

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four sides of equal length and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°), and whose diagonals are all equal in length. A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">Cuisenaire rods</span> Learning aids

Cuisenaire rods are mathematics learning aids for pupils that provide an interactive, hands-on way to explore mathematics and learn mathematical concepts, such as the four basic arithmetical operations, working with fractions and finding divisors. In the early 1950s, Caleb Gattegno popularised this set of coloured number rods created by Georges Cuisenaire (1891–1975), a Belgian primary school teacher, who called the rods réglettes.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Rhombille tiling</span> Tiling of the plane with 60° rhombi

In geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets of six rhombi meet at their 60° angles.

<span class="mw-page-title-main">Trapezo-rhombic dodecahedron</span> Polyhedron with 6 rhombic and 6 trapezoidal faces

In geometry, the trapezo-rhombic dodecahedron or rhombo-trapezoidal dodecahedron is a convex dodecahedron with 6 rhombic and 6 trapezoidal faces. It has D3h symmetry. A concave form can be constructed with an identical net, seen as excavating trigonal trapezohedra from the top and bottom. It is also called the trapezoidal dodecahedron.

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

<span class="mw-page-title-main">Manipulative (mathematics education)</span> Educational aid

In mathematics education, a manipulative is an object which is designed so that a learner can perceive some mathematical concept by manipulating it, hence its name. The use of manipulatives provides a way for children to learn concepts through developmentally appropriate hands-on experience.

<span class="mw-page-title-main">Montessori sensorial materials</span> Educational aid

Montessori sensorial materials are materials used in the Montessori classroom to help a child develop and refine their five senses. Use of these materials constitutes the next level of difficulty after those of practical life.

<span class="mw-page-title-main">Base ten blocks</span>

Base ten blocks, also known as Dienes blocks after popularizer Zoltán Dienes, are a mathematical manipulative used by students to practice counting and elementary arithmetic and develop number sense in the context of the decimal place-value system as a more concrete and direct representation than written Hindu–Arabic numerals. The three-dimensional blocks are made of a solid material such as plastic or wood and generally come in four sizes, each representing a power of ten used as a place in the decimal system: units, longs, flats and blocks. There are also computer programs available that simulate base ten blocks.

<span class="mw-page-title-main">Penrose tiling</span> Non-periodic tiling of the plane

A Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.

<span class="mw-page-title-main">Rep-tile</span> Shape subdivided into copies of itself

In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine.

<span class="mw-page-title-main">Elongated octahedron</span> Convex polyhedron with 8 faces

In geometry, an elongated octahedron is a polyhedron with 8 faces, 14 edges, and 8 vertices.

<span class="mw-page-title-main">3-4-6-12 tiling</span> Uniform Tiling

In geometry of the Euclidean plane, the 3-4-6-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, hexagons and dodecagons, arranged in two vertex configuration: 3.4.6.4 and 4.6.12.

The Education Development Center (EDC) is a global nonprofit organization to improve education, promote health, and expand economic opportunity across the United States and in more than 80 other countries. EDC headquarters are in Waltham, Massachusetts, and main offices in Washington, D.C., New York City, and Chicago. EDC has 1,400 employees worldwide.

<span class="mw-page-title-main">Socolar tiling</span> Non-periodic tiling of the plane

A Socolar tiling is an example of an aperiodic tiling, developed in 1989 by Joshua Socolar in the exploration of quasicrystals. There are 3 tiles a 30° rhombus, square, and regular hexagon. The 12-fold symmetry set exist similar to the 10-fold Penrose rhombic tilings, and 8-fold Ammann–Beenker tilings.

References

  1. 1 2 Elementary Science Study (1970). Teacher's guide for pattern blocks . Retrieved 28 November 2018.
  2. Gregg, Simon (2020). Pattern Blocks. Derby, England: Association of Teachers of Mathematics. ISBN   978-1912185207 . Retrieved 1 November 2020.
  3. From the accompanying booklet to his Twenty-First Century Pattern Blocks
  4. McFarland, Matt (9 December 2013). "The childhood toys that inspired female engineers and scientists". The Washington Post. Retrieved 10 December 2013.
  5. Picciotto Math Education
  6. 1 2 Walter, Marion (December 1996). "letter". Mathematics Teaching (157): 3. Retrieved 3 May 2020.
  7. "Spark: Math Manipulatives". www.ucds.org.
  8. Danielson, Christopher. "Twenty-First Century Pattern Blocks". Talking Math With Your Kids. Archived from the original on 2018-12-09. Retrieved 28 November 2018.