Paul Douglas Tougaw

Last updated

Paul Douglas ("Doug") Tougaw (born July 3, 1969), is a full professor in and chair of the Department of Electrical and Computer Engineering at Valparaiso University. He received his B.S. in Electrical Engineering from the Rose-Hulmann Institute of Technology and his M.S. and Ph.D. in Electrical Engineering from the University of Notre Dame in 1995. [1] In 2005, Tougaw earned an MBA from Valparaiso University's College of Business Administration. [2] His main area of research interest is in the field of Quantum Cellular Automata (QCA). [3] He was awarded the "Best Regional Paper" award at the 2007 Conference of the American Society of Engineering Educators. He was also runner-up for the USA National IEEE Young Engineer award.

Doug Tougaw's contribution to the field has focused on the building of medium-scale integration components such as full-adders from basic QCA gates as well as fault-tolerance studies of QCA wires.

Presently, Doug Tougaw is the Richardson Professor [4] and member of the department of electrical and computer engineering at Valparaiso University. [5]

Recent work with Quantum cellular automata (QCA) devices

Recently, Dr. Tougaw has developed a Quantum-dot Cellular Automata (QCA) device having normal QCA cells laid out in a planar structure, having a set of input lines and a set of orthogonal output lines. The device has clocking regions that control the flow of binary signals through the device. The input columns are driven by a separate input signal, and all the cells of each column align to match their input signal. These input columns then serve as drivers for output rows that act as serial shift registers under the control of clock signals applied to sub-sections of the rows. In this way, a copy of the contents of each of the input signals propagates along each of the output rows to an output cell. The output cells of each output row may be assigned their own, latching clock signal. [6]

Notes

  1. Department of Electrical & Computer Engineering : College of Engineering : Valparaiso University [ permanent dead link ]
  2. alumniprofiles
  3. Christopher Graunke, David Wheeler, Douglas Tougaw, and Jeffrey D. Will, “Implementation of a crossbar network using quantum-dot cellular automata,” IEEE Transactions on Nanotechnology, vol. 4, no. 4, Jul. 2005 p. 1 - 6
  4. Engineering Professor Tapped for Alumni Teaching Award http://www.valpo.edu/valpomag/faculty/engineering.php%5B%5D
  5. Department of Electrical & Computer Engineering : College of Engineering : Valparaiso University Archived 2006-09-09 at the Wayback Machine
  6. PCT Application WO2006133117 (December 24, 2006)


Related Research Articles

A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device.

<span class="mw-page-title-main">Digital electronics</span> Electronic circuits that utilize digital signals

Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals.

<span class="mw-page-title-main">Dynamic random-access memory</span> Type of computer memory

Dynamic random-access memory is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal-oxide-semiconductor (MOS) technology. While most DRAM memory cell designs use a capacitor and transistor, some only use two transistors. In the designs where a capacitor is used, the capacitor can either be charged or discharged; these two states are taken to represent the two values of a bit, conventionally called 0 and 1. The electric charge on the capacitors gradually leaks away; without intervention the data on the capacitor would soon be lost. To prevent this, DRAM requires an external memory refresh circuit which periodically rewrites the data in the capacitors, restoring them to their original charge. This refresh process is the defining characteristic of dynamic random-access memory, in contrast to static random-access memory (SRAM) which does not require data to be refreshed. Unlike flash memory, DRAM is volatile memory, since it loses its data quickly when power is removed. However, DRAM does exhibit limited data remanence.

In automata theory, sequential logic is a type of logic circuit whose output depends on the present value of its input signals and on the sequence of past inputs, the input history. This is in contrast to combinational logic, whose output is a function of only the present input. That is, sequential logic has state (memory) while combinational logic does not.

<span class="mw-page-title-main">Theoretical computer science</span> Subfield of computer science and mathematics

Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory.

<span class="mw-page-title-main">Direct digital synthesis</span>

Direct digital synthesis (DDS) is a method employed by frequency synthesizers used for creating arbitrary waveforms from a single, fixed-frequency reference clock. DDS is used in applications such as signal generation, local oscillators in communication systems, function generators, mixers, modulators, sound synthesizers and as part of a digital phase-locked loop.

Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing.

The primary focus of this article is asynchronous control in digital electronic systems. In a synchronous system, operations are coordinated by one, or more, centralized clock signals. An asynchronous system, in contrast, has no global clock. Asynchronous systems do not depend on strict arrival times of signals or messages for reliable operation. Coordination is achieved using event-driven architecture triggered by network packet arrival, changes (transitions) of signals, handshake protocols, and other methods.

Quantum dot cellular automata are a proposed improvement on conventional computer design (CMOS), which have been devised in analogy to conventional models of cellular automata introduced by John von Neumann.

A quantum cellular automaton (QCA) is an abstract model of quantum computation, devised in analogy to conventional models of cellular automata introduced by John von Neumann. The same name may also refer to quantum dot cellular automata, which are a proposed physical implementation of "classical" cellular automata by exploiting quantum mechanical phenomena. QCA have attracted a lot of attention as a result of its extremely small feature size and its ultra-low power consumption, making it one candidate for replacing CMOS technology.

<span class="mw-page-title-main">Rico Malvar</span>

Henrique "Rico" S. Malvar is a distinguished Brazilian engineer and a signal processing researcher at Microsoft Research's largest laboratory in Redmond, Washington, United States. He was the managing director of the lab following the departure of long-time Managing Director Dan Ling in 2007, when he oversaw about 350 researchers. Currently, he is a Distinguished Engineer at Microsoft Research, heading a team that develops new user experiences with new devices and new input/output interaction modes, with special attention to inclusiveness and empowering people with disabilities.

Evelyn L. Hu is the Tarr-Coyne Professor of Applied Physics and of Electrical Engineering at Harvard University. Hu has made major contributions to nanotechnology by designing and creating complex nanostructures. Her work has focused on nanoscale devices made from compound semiconductors and on novel devices made by integrating various materials, both organic and inorganic. She has also created nanophotonic structures that might someday facilitate quantum computing.

<span class="mw-page-title-main">Reversible cellular automaton</span> Cellular automaton that can be run backwards

A reversible cellular automaton is a cellular automaton in which every configuration has a unique predecessor. That is, it is a regular grid of cells, each containing a state drawn from a finite set of states, with a rule for updating all cells simultaneously based on the states of their neighbors, such that the previous state of any cell before an update can be determined uniquely from the updated states of all the cells. The time-reversed dynamics of a reversible cellular automaton can always be described by another cellular automaton rule, possibly on a much larger neighborhood.

<span class="mw-page-title-main">Kang L. Wang</span>

Kang Lung Wang is recognized as the discoverer of chiral Majorana fermions by IUPAP. Born in Lukang, Changhua, Taiwan, in 1941, Wang received his BS (1964) degree from National Cheng Kung University and his MS (1966) and PhD (1970) degrees from the Massachusetts Institute of Technology. In 1970 to 1972 he was the Assistant Professor at MIT. From 1972 to 1979, he worked at the General Electric Corporate Research and Development Center as a physicist/engineer. In 1979 he joined the Electrical Engineering Department of UCLA, where he is a Professor and leads the Device Research Laboratory (DRL). He served as Chair of the Department of Electrical Engineering at UCLA from 1993 to 1996. His research activities include semiconductor nano devices, and nanotechnology; self-assembly growth of quantum structures and cooperative assembly of quantum dot arrays Si-based Molecular Beam Epitaxy, quantum structures and devices; Nano-epitaxy of hetero-structures; Spintronics materials and devices; Electron spin and coherence properties of SiGe and InAs quantum structures for implementation of spin-based quantum information; microwave devices. He was the inventor of strained layer MOSFET, quantum SRAM cell, and band-aligned superlattices. He holds 45 patents and published over 700 papers. He is a passionate teacher and has mentored hundreds of students, including MS and PhD candidates. Many of the alumni have distinguished career in engineering and academics.

<span class="mw-page-title-main">Gerhard Klimeck</span>

Gerhard Klimeck is a German-American scientist and author in the field of nanotechnology. He is a professor of Electrical and Computer Engineering at Purdue University School of Electrical and Computer Engineering.

Ranjan Kumar Mallik is an Indian electrical and communications engineer and a professor at the Department of Electrical Engineering of the Indian Institute of Technology, Delhi. He held the Jai Gupta Chair at IIT Delhi from 2007 to 2012 and the Brigadier Bhopinder Singh Chair from 2012 to 2017. He is known for his researches on multiple-input multi-output systems and is an elected fellow of all the three major Indian science academies viz. Indian Academy of Sciences, Indian National Science Academy, and The National Academy of Sciences, India. He is also an elected fellow of The World Academy of Sciences, Indian National Academy of Engineering, and The Institute of Electrical and Electronics Engineers, Inc.

David J. Love is an American professor of engineering at Purdue University. He completed his B.S. and M.S. degrees, both in electrical engineering, at the University of Texas at Austin in 2000 and 2002, respectively. He received his Ph.D. in electrical engineering from UT Austin in 2004 under the supervision of Robert W. Heath Jr. Love was appointed as an assistant professor at Purdue University in 2004. In 2009, he was promoted to associate professor, and in 2013, he was made full professor. In 2012, he was recognized as a University Faculty Scholar at Purdue. In 2018, he was named a Reilly Professor of Electrical and Computer Engineering at Purdue.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

<span class="mw-page-title-main">Paul R. Berger</span> American electrical engineer

Paul R. Berger is a professor in electrical and computer engineering at Ohio State University and physics, and a distinguished visiting professor (Docent) at Tampere University in Finland, recognized for his work on self-assembled quantum dots under strained-layer epitaxy, quantum tunneling based semiconductor devices and solution processable flexible electronics.

<span class="mw-page-title-main">Supriyo Bandyopadhyay</span> Indian-born American electrical engineer

Supriyo Bandyopadhyay is an Indian-born American electrical engineer, academic and researcher. He is Commonwealth Professor of Electrical and Computer Engineering at Virginia Commonwealth University, where he directs the Quantum Device Laboratory.