Dr Paul Watters is an Australian cybercrime researcher and cybersecurity professional. He is Honorary Professor of Criminology and Security Studies at Macquarie University. [1] Dr Watters has made significant research contributions to cybercrime detection and prevention, including phishing, malware, piracy and child exploitation. [2] He is the inventor of the 100 Point Cyber Check, a cyber risk assessment for small-medium enterprises. [3] According to ScholarGPS, he is ranked in the top 0.84% of researchers globally. [4]
Dr Watters completed three theses and made significant contributions to the field of cognitive and neural modelling:
Dr. Paul Watters’ contributions to malware analysis have had a significant impact on the field of cybersecurity, particularly in the areas of malware detection and behaviour analysis. His work has focused on innovative techniques such as API call analysis, machine learning, and behavioural profiling, which have advanced both theoretical understanding and practical applications for identifying and mitigating malware threats. Some key highlights include:
Dr. Watters' body of work has played a pivotal role in enhancing the efficacy of malware detection techniques by moving beyond traditional, static detection methods toward more dynamic, machine learning-driven approaches. His research has enabled better defence mechanisms against zero-day attacks, rootkits, and other sophisticated malware, significantly improving the resilience of modern cybersecurity systems.
Dr. Watters' papers on phishing have significantly contributed to the development of phishing detection mechanisms by leveraging both machine learning techniques and behavioural analysis. They have improved the classification of phishing emails, clustering of phishing websites, and detection of phishing campaigns, thereby strengthening the overall cybersecurity landscape against phishing threats. His research has advanced both the theoretical understanding and practical application of machine learning techniques to combat phishing. Key impacts of his work include:
Dr. Watters’ contributions have strengthened phishing detection technologies, provided tools for better understanding phishing campaigns, and offered insights into the human factors that make phishing successful. His integration of machine learning with behavioural analysis has advanced both the academic field and the practical tools available to cybersecurity professionals, significantly enhancing the defence against phishing threats at both individual and organisational levels.
Dr. Paul Watters' body of work on piracy and intellectual property theft has had a significant impact on both cybersecurity and the protection of digital content. His research has contributed to a deeper understanding of the risks, behaviours, and economic structures surrounding online piracy. The key impacts include:
This body of work has been instrumental in improving understanding of how digital piracy is both a cyber and economic issue, influencing public policy and corporate responsibility regarding advertising on illegal platforms. His work has helped establish that users who engage in piracy are at a heightened risk of malware infections. His empirical data and analysis have provided critical insights that inform user education programs and cybersecurity policies aimed at reducing malware spread through piracy websites. His research has also had an impact on corporate responsibility, influencing policies that discourage mainstream advertisers from funding piracy-related activities. The findings are particularly valuable for policymakers looking to disrupt the financial support systems that sustain piracy websites. By showing how piracy is linked not only to intellectual property theft but also to cybercrime, his work has influenced the way governments, law enforcement agencies, and corporations approach piracy prevention.
Dr. Watters has contributed to the advancement of forensic tools that utilise AI and deep learning to detect CSAM more efficiently, supporting law enforcement and cybersecurity efforts. His work on situational crime prevention in child-centred institutions offers valuable insights into how environmental factors can be modified to reduce opportunities for abuse. Several of Dr. Watters’ papers focus on developing and evaluating strategies to deter users from accessing CSAM, particularly through online messaging and the development of chatbots. His research spans multiple facets of the issue, including deterrence strategies, forensic detection, and crime prevention, with the following key impacts:
Dr. Watters’ research has significantly advanced the technological capabilities of detecting and deterring access to CSAM. His contributions have led to Automated Detection Systems, Behavioural Interventions and enhancements of Forensic and Law Enforcement Tools. In his work on creating digital honeypots, Dr. Watters explored the use of deceptive traps designed to attract individuals seeking to engage with CSAM. These honeypots were crafted to mimic environments where exploitative material might be found, but instead of providing illegal content, they can be used to prove the effectiveness of deterrence strategies. Dr. Watters’ work on chatbots was aimed at directly intervening with individuals who are attempting to access or engage with CSAM. The chatbot was designed to engage users in real time, providing them with therapeutic or law enforcement warnings when they attempt to seek out harmful content. This approach leverages behavioural psychology, aiming to stop users from proceeding down the path of exploitation. The combined use of honeypots and chatbots represents a dual strategy in combating CSAM. Honeypots function as a proactive detection tool, helping law enforcement gather critical data on offenders, while chatbots act as a behavioural intervention tool aimed at reducing the demand for exploitative content.
Malware is any software intentionally designed to cause disruption to a computer, server, client, or computer network, leak private information, gain unauthorized access to information or systems, deprive access to information, or which unknowingly interferes with the user's computer security and privacy. Researchers tend to classify malware into one or more sub-types.
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Typically data is collected in text corpora, using either rule-based, statistical or neural-based approaches in machine learning and deep learning.
The SANS Institute is a private U.S. for-profit company founded in 1989 that specializes in information security, cybersecurity training, and selling certificates. Topics available for training include cyber and network defenses, penetration testing, incident response, digital forensics, and auditing. The information security courses are developed through a consensus process involving administrators, security managers, and information security professionals. The courses cover security fundamentals and technical aspects of information security. The institute has been recognized for its training programs and certification programs. Per 2021, SANS is the world’s largest cybersecurity research and training organization. SANS is an acronym for SysAdmin, Audit, Network, and Security.
In computer terminology, a honeypot is a computer security mechanism set to detect, deflect, or, in some manner, counteract attempts at unauthorized use of information systems. Generally, a honeypot consists of data that appears to be a legitimate part of the site which contains information or resources of value to attackers. It is actually isolated, monitored, and capable of blocking or analyzing the attackers. This is similar to police sting operations, colloquially known as "baiting" a suspect.
Cybercrime encompasses a wide range of criminal activities that are carried out using digital devices and/or networks. These crimes involve the use of technology to commit fraud, identity theft, data breaches, computer viruses, scams, and expanded upon in other malicious acts. Cybercriminals exploit vulnerabilities in computer systems and networks to gain unauthorized access, steal sensitive information, disrupt services, and cause financial or reputational harm to individuals, organizations, and governments.
ESET, s.r.o., is a software company specializing in cybersecurity. ESET's security products are made in Europe and provides security software in over 200 countries and territories worldwide. Its software is localized into more than 30 languages.
Network security consists of the policies, processes and practices adopted to prevent, detect and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs: conducting transactions and communications among businesses, government agencies and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: it secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.
Scott Craig Deerwester is a ptented and highly cited computer scientist who founded latent semantic analysis (LSA), a significant method in the field of natural language processing. His expertise encompasses information and data science, software systems architecture, and data modeling, reflecting his commitment to applying technology to address complex societal challenges.
The Advanced Learning and Research Institute (ALaRI), a faculty of informatics, was established in 1999 at the University of Lugano to promote research and education in embedded systems. The Faculty of Informatics within very few years has become one of the Switzerland major destinations for teaching and research, ranking third after the two Federal Institutes of Technology, Zurich and Lausanne.
Kaspersky Lab is a Russian multinational cybersecurity and anti-virus provider headquartered in Moscow, Russia, and operated by a holding company in the United Kingdom. It was founded in 1997 by Eugene Kaspersky, Natalya Kaspersky and Alexey De-Monderik. Kaspersky Lab develops and sells antivirus, internet security, password management, endpoint security, and other cybersecurity products and services.
Niels Provos is a German-American researcher in security engineering, malware, and cryptography. He received a PhD in computer science from the University of Michigan. From 2003 to 2018, he worked at Google as a Distinguished Engineer on security for Google. In 2018, he left Google to join Stripe as its new head of security. In 2022, Provos left Stripe and joined Lacework as head of Security Efficacy.
There is no commonly agreed single definition of “cybercrime”. It refers to illegal internet-mediated activities that often take place in global electronic networks. Cybercrime is "international" or "transnational" – there are ‘no cyber-borders between countries'. International cybercrimes often challenge the effectiveness of domestic and international law, and law enforcement. Because existing laws in many countries are not tailored to deal with cybercrime, criminals increasingly conduct crimes on the Internet in order to take advantages of the less severe punishments or difficulties of being traced.
Palo Alto Networks, Inc. is an American multinational cybersecurity company with headquarters in Santa Clara, California. The core product is a platform that includes advanced firewalls and cloud-based offerings that extend those firewalls to cover other aspects of security. The company serves over 70,000 organizations in over 150 countries, including 85 of the Fortune 100. It is home to the Unit 42 threat research team and hosts the Ignite cybersecurity conference. It is a partner organization of the World Economic Forum.
Markus Jakobsson is a computer security researcher, entrepreneur and writer, whose work is focused on the issue of digital security.
Endpoint security or endpoint protection is an approach to the protection of computer networks that are remotely bridged to client devices. The connection of endpoint devices such as laptops, tablets, mobile phones, and other wireless devices to corporate networks creates attack paths for security threats. Endpoint security attempts to ensure that such devices follow compliance to standards.
Deception technology is a category of cyber security defense mechanisms that provide early warning of potential cyber security attacks and alert organizations of unauthorized activity. Deception technology products can detect, analyze, and defend against zero-day and advanced attacks, often in real time. They are automated, accurate, and provide insight into malicious activity within internal networks which may be unseen by other types of cyber defense. Deception technology seeks to deceive an attacker, detect them, and then defeat them.
Anomali Inc. is an American cybersecurity company that develops and provides threat intelligence products. In 2023, the company moved into providing security analytics powered by artificial intelligence (AI).
Internet security awareness or Cyber security awareness refers to how much end-users know about the cyber security threats their networks face, the risks they introduce and mitigating security best practices to guide their behavior. End users are considered the weakest link and the primary vulnerability within a network. Since end-users are a major vulnerability, technical means to improve security are not enough. Organizations could also seek to reduce the risk of the human element. This could be accomplished by providing security best practice guidance for end users' awareness of cyber security. Employees could be taught about common threats and how to avoid or mitigate them.
Ali Dehghantanha is an academic-entrepreneur in cybersecurity and cyber threat intelligence. He is a Professor of Cybersecurity and a Canada Research Chair in Cybersecurity and Threat Intelligence.