Paulina Jaramillo | |
---|---|
Born | |
Alma mater | Florida International University Carnegie Mellon University |
Scientific career | |
Institutions | Carnegie Mellon University |
Thesis | A life cycle comparison of coal and natural gas for electricity generation and the production of transportation fuels (2007) |
Website | https://orcid.org/0000-0002-4214-1106 |
Paulina Jaramillo is a Colombian-American engineer who is Professor of Engineering and Public Policy at Carnegie Mellon University (CMU). She serves as Director of the Green Design Institute. Her research focuses on energy system sustainability and climate change. She was selected as an Andrew Carnegie Fellow in 2020.
Jaramillo is from originally from Medellín, Colombia. [1] [2] She was an undergraduate student at Florida International University, where she majored in Civil and Environmental Engineering. [3] She completed her masters and doctoral degree in Civil and Environmental Engineering at Carnegie Mellon University, where she studied the life cycle of coal and natural gas for electricity generation. [4]
Jaramillo's earliest research focused on using process-based life cycle assessment (LCA) to evaluate the climate impacts of coal and natural gas production and use in the USA. In 2007, she published one of the first papers to account for methane leakage in the life cycle climate impacts of natural gas. [5] In 2010, Jaramillo joined the faculty at Carnegie Mellon University as the Executive Director of the RenewElec project, [3] which focused on research to understand the barriers and opportunities for integrating variable and intermittent renewable resources in the US power system. [6] Jaramillo has noted that through the RenewElec project, she learned that the technical and economic constraints under which the power system is operated could be key drivers of the environmental impacts of power generation. [3] As a result, Jaramillo started working on consequential LCA research that integrates power system models into the LCA framework. Using this framework, Jaramillo and her research team have evaluated the climate impacts of electric vehicles, [7] [8] wind power, [9] [10] energy storage, [11] and even Amazonian hydropower. [12] [13]
Jaramillo also works to understand the climate impacts on power systems. Between 2015 and 2020, she led an NSF-funded collaborative project with hydro-climatologists at the University of Washington and the Pacific Northwest National Lab to evaluate the climate impacts on the power system in the Southeastern United States. This project developed models to understand how climate change will affect demand for electricity and lead to new operating constraints at individual power plants. [14] Furthermore, Jaramillo and her collaborators developed a power system model to integrate the new demand for electricity, power plant constraints, and hydro-climatology data to simulate the integrated operations of the power system under a broad set of climate change scenarios. [15] [16] This project also spun off research to evaluate the climate-induced risks to power generation in other regions of the world. [17]
Since 2019, Jaramillo has co-led on the Open Energy Outlook (OEO) Initiative, [18] a collaboration between CMU and North Carolina State University. Funded through a seed grant from the Sloan Foundation, the OEO initiative aims to bring energy modeling into the twenty-first century by applying the gold standards of policy-focused academic modeling, maximizing transparency, and building a networked community. The primary goal of this effort is to examine U.S. energy futures to inform future energy and climate policy efforts. [19]
In 2014, Jaramillo transitioned some of her work to focus on energy and environmental issues in the Global South. With funding from the Rockefeller Foundation and in collaboration with researchers at the University of Massachusetts at Amherst, Columbia University, the Rochester Institute of Technology, and the Colorado School of Mines, Jaramillo helped establish the Electricity Growth and Use in Developing Economies (e-GUIDE) Initiative. [20] This initiative seeks to transform the approaches used for planning and operations of electricity infrastructure in developing regions. Through this project, Jaramillo and her collaborators identified that the demand for electricity in rural communities is poorly understood and that energy system developers are observing unexpected trends in electricity demand. [21] Jaramillo and her team are also evaluating opportunities for productive uses of electricity that support utility business models. [22] Similarly, they have assessed options for "behind-the-meter" distributed energy systems to replace diesel generators prevalent in some Sub-Saharan African cities. [23]
For the 2016-2017 academic year, Jaramillo lived in Kigali, Rwanda and worked at the CMU Africa campus. [3] Jaramillo has suggested that witnessing first-hand the severity of air quality issues in the region, motivated her to analyze the linkage between unreliable electricity and emissions of local air pollutants in Sub-Saharan Africa. [24] That work also inspired the creation of the Africa qualité de l'air (AfriqAir) network. In partnership with several international organizations (including local institutions), AfriqAir is a new hybrid air quality monitoring network with over 50 low-cost sensors and reference-grade monitors, mainly in urban areas across 11 African countries. The research objectives of this project include evaluation of sensor performance across the different climates in Africa, integration of ground sensor data with satellite data to expand spatial data coverage, verification of air quality models, and investigation of air pollution health effects. In 2020, Jaramillo and her AfriqAir collaborators published the first paper evaluating air quality in Kigali, Rwanda. [25] Jaramillo and the AfriqAir team are now using the in-situ measurements from AfriqAir's hybrid sensor network, integrated with satellite-based measurements to deliver at-scale data products for air quality mapping. These methods and data can then be used for backcasting and forecasting air quality and performing source apportionment to identify specific sources of emissions.
In 2018, Jaramillo was selected to be a lead author for the report from Working Group III (WGIII) as part of the IPCC's 6th Assessment Report. WGIII is responsible for preparing the report about climate mitigation strategies, and Jaramillo was selected to co-author the chapter about mitigation in the Transportation Sector. [26] In August 2021, Jaramillo was promoted to the role of Coordinating Lead Author for the chapter. The final draft of the report was submitted for government review on November 1, 2021 and the final report will be released on April 4, 2022. [27] [28]
The scientific community has been investigating the causes of climate change for decades. After thousands of studies, it came to a consensus, where it is "unequivocal that human influence has warmed the atmosphere, ocean and land since pre-industrial times." This consensus is supported by around 200 scientific organizations worldwide, The dominant role in this climate change has been played by the direct emissions of carbon dioxide from the burning of fossil fuels. Indirect CO2 emissions from land use change, and the emissions of methane, nitrous oxide and other greenhouse gases play major supporting roles.
Global warming potential (GWP) is an index to measure how much infrared thermal radiation a greenhouse gas would absorb over a given time frame after it has been added to the atmosphere. The GWP makes different greenhouse gases comparable with regard to their "effectiveness in causing radiative forcing". It is expressed as a multiple of the radiation that would be absorbed by the same mass of added carbon dioxide, which is taken as a reference gas. Therefore, the GWP has a value of 1 for CO2. For other gases it depends on how strongly the gas absorbs infrared thermal radiation, how quickly the gas leaves the atmosphere, and the time frame being considered.
There is a nearly unanimous scientific consensus that the Earth has been consistently warming since the start of the Industrial Revolution, that the rate of recent warming is largely unprecedented, and that this warming is mainly the result of a rapid increase in atmospheric carbon dioxide (CO2) caused by human activities. The human activities causing this warming include fossil fuel combustion, cement production, and land use changes such as deforestation, with a significant supporting role from the other greenhouse gases such as methane and nitrous oxide. This human role in climate change is considered "unequivocal" and "incontrovertible".
Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Definitions of sustainable energy usually look at its effects on the environment, the economy, and society. These impacts range from greenhouse gas emissions and air pollution to energy poverty and toxic waste. Renewable energy sources such as wind, hydro, solar, and geothermal energy can cause environmental damage, but are generally far more sustainable than fossil fuel sources.
An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.
Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Greenhouse gas emissions are primarily caused by people burning fossil fuels such as coal, oil, and natural gas. Phasing out fossil fuel use can happen by conserving energy and replacing fossil fuels with clean energy sources such as wind, hydro, solar, and nuclear power. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Governments have pledged to reduce greenhouse gas emissions, but actions to date are insufficient to avoid dangerous levels of climate change.
Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the burning of fossil fuels or biomass results in a stream of CO2 that could be captured and stored by CCS. Usually the CO2 is captured from large point sources, such as a chemical plant or a bioenergy plant, and then stored in a suitable geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change. For example, CCS retrofits for existing power plants can be one of the ways to limit emissions from the electricity sector and meet the Paris Agreement goals.
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is primarily caused by humans burning fossil fuels since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.
Stratospheric aerosol injection is a proposed method of solar geoengineering to reduce global warming. This would introduce aerosols into the stratosphere to create a cooling effect via global dimming and increased albedo, which occurs naturally from volcanic winter. It appears that stratospheric aerosol injection, at a moderate intensity, could counter most changes to temperature and precipitation, take effect rapidly, have low direct implementation costs, and be reversible in its direct climatic effects. The Intergovernmental Panel on Climate Change concludes that it "is the most-researched [solar geoengineering] method that it could limit warming to below 1.5 °C (2.7 °F)." However, like other solar geoengineering approaches, stratospheric aerosol injection would do so imperfectly and other effects are possible, particularly if used in a suboptimal manner.
David W. Keith is a professor in the Department of the Geophysical Sciences at the University of Chicago. He joined the University of Chicago in April 2023. Keith previously served as the Gordon McKay Professor of Applied Physics for Harvard University's Paulson School of Engineering and Applied Sciences (SEAS) and professor of public policy for the Harvard Kennedy School at Harvard University. Early contributions include development of the first atom interferometer and a Fourier-transform spectrometer used by NASA to measure atmospheric temperature and radiation transfer from space.
The environmental impact of the energy industry is significant, as energy and natural resource consumption are closely related. Producing, transporting, or consuming energy all have an environmental impact. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. Scientific consensus on some of the main human activities that contribute to global warming are considered to be increasing concentrations of greenhouse gases, causing a warming effect, global changes to land surface, such as deforestation, for a warming effect, increasing concentrations of aerosols, mainly for a cooling effect.
A carbon budget is a concept used in climate policy to help set emissions reduction targets in a fair and effective way. It examines the "maximum amount of cumulative net global anthropogenic carbon dioxide emissions that would result in limiting global warming to a given level". It can be expressed relative to the pre-industrial period. In this case, it is the total carbon budget. Or it can be expressed from a recent specified date onwards. In that case it is the remaining carbon budget.
A climate target, climate goal or climate pledge is a measurable long-term commitment for climate policy and energy policy with the aim of limiting the climate change. Researchers within, among others, the UN climate panel have identified probable consequences of global warming for people and nature at different levels of warming. Based on this, politicians in a large number of countries have agreed on temperature targets for warming, which is the basis for scientifically calculated carbon budgets and ways to achieve these targets. This in turn forms the basis for politically decided global and national emission targets for greenhouse gases, targets for fossil-free energy production and efficient energy use, and for the extent of planned measures for climate change mitigation and adaptation.
Climate change in the Middle East and North Africa (MENA) refers to changes in the climate of the MENA region and the subsequent response, adaption and mitigation strategies of countries in the region. In 2018, the MENA region emitted 3.2 billion tonnes of carbon dioxide and produced 8.7% of global greenhouse gas emissions (GHG) despite making up only 6% of the global population. These emissions are mostly from the energy sector, an integral component of many Middle Eastern and North African economies due to the extensive oil and natural gas reserves that are found within the region. The region of Middle East is one of the most vulnerable to climate change. The impacts include increase in drought conditions, aridity, heatwaves and sea level rise.
Michael Wang is a distinguished fellow, a senior scientist, and director of the Systems Assessment Center of the Energy Systems Division at the U.S. Department of Energy's (DOE) Argonne National Laboratory. He is also a faculty associate in the Energy Policy Institute at The University of Chicago; a senior fellow at the Northwestern-Argonne Institute of Science and Engineering at Northwestern University.
The climate in Texas is changing partially due to global warming and rising trends in greenhouse gas emissions. As of 2016, most area of Texas had already warmed by 1.5 °F (0.83 °C) since the previous century because of greenhouse gas emissions by the United States and other countries. Texas is expected to experience a wide range of environmental impacts from climate change in the United States, including rising sea levels, more frequent extreme weather events, and increasing pressure on water resources.
Sabine Fuss is a German climate scientist. She heads the "Sustainable Resource Management and Global Change" working group at the Mercator Research Institute on Global Commons and Climate Change (MCC). She is a professor at Humboldt University of Berlin.
Joeri Rogelj is a Belgian climate scientist working on solutions to climate change. He explores how societies can transform towards sustainable futures. He is a Professor in Climate Science and Policy at the Centre for Environmental Policy (CEP) and Director of Research at the Grantham Institute – Climate Change and Environment, both at Imperial College London. He is also affiliated with the International Institute for Applied Systems Analysis. He is an author of several climate reports by the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Environment Programme (UNEP), and a member of the European Scientific Advisory Board for Climate Change.
Kristen B. Averyt is a climate scientist known for her work on water resources and climate change. As of 2024 she is the executive vice president of the American Geophysical Union.