Penfieldite

Last updated
Penfieldite
Penfieldite-Boleite-Cotunnite-206830.jpg
General
Category Mineral
Formula
(repeating unit)
Pb2Cl3(OH)
IMA symbol Pfd
Strunz classification 03.DC.15
Dana classification 10.04.01.01
Crystal system Hexagonal
Crystal class Trigonal Dipyramidal
H-M symbol: 6
Space group P6
Unit cell 5,360.83
Identification
Formula mass 537.77
ColorColorless, white, yellowish, bluish
Cleavage Distinct/good on {0001}
Mohs scale hardness3–4
Luster Adamantine, greasy
Streak White
Diaphaneity Transparent
Specific gravity 6.00
Density Measured: 5.82 – 6.61
Calculated: 6.00
Optical propertiesUniaxial (+)
Refractive index nω = 2.130(1)
nε = 2.210(1)
Birefringence 0.080
Solubility Soluble in hydrogen dioxide

Penfieldite is a rare lead hydroxychloride mineral [1] from the class of halides. It was named after Samuel Lewis Penfield. It has been a valid species before the founding of IMA, and was first published in 1892. It had been grandfathered, meaning the name penfieldite is still believed to refer to a valid species. [2] [3] When it was first described by Genth in 1892 from Laurion, Greece, the mineral had the formula of Pb3Cl4O. [1]

Contents

Properties

Penfieldite grows tabular pyramidal crystals, meaning it is longer instead of being wide, and grows in the shape of a pyramid. It is a secondary mineral, meaning that rock minerals went under transformation due to changes in pressure and temperature, and penfieldite is the newly formed stable mineral after this transformation. [2] Singular crystals are usually striped, and can grow up to 3 cm. Pure penfieldite is colorless, however, due to lattice defects or foreign admixtures, it can be white, yellow or even blue. It mainly consists of lead (77.06%) and chlorine (19.78%), and has a negligible amount of oxygen (2.98%) and hydrogen (0.19%) in it. It does not show any radioactive properties whatsoever. [2] After it is dissolved in water, penfieldite leaves a lead oxychloride residue behind that is yellowish white in color. [3] When heated to 180 °C, a 9c periodicity can be observed, meaning the crystal repeats itself every nine layers in the c crystallographic direction. When further heated to 200 °C and above, the crystals are quickly destroyed. [1]

Classification

In both the 8th and the 9th edition of the Strunz Mineralogical tables, penfieldite is classified as belonging to the oxyhalides (and related to double halides). However, the new Strunz mineral classification now subdivides it more precisely, according to the cations involved in the formula, and the mineral is accordingly in the subsection "With Pb (As, Sb, Bi), without Cu". The Dana classification also assigns penfieldite to the oxyhalides, but classifies it according to chemical composition in the subdivision "Oxihalides and hydroxyhalides with the formula A2(O,OH)Xq".

Occurrences and localities

Penfieldite has three localities, which are Laurium, Greece, Baratti Beach, Italy, and at the Margarita Mine, Chile. [4] It is a secondary mineral formed due to sea water contact and smelting activities. [2] It is the alteration product of a lead-bearing slag contacting seawater in Greece and Italy, and in Chile, it can be found in an oxidized hydrothermal lead deposit. Specimens found in Greece were associated with phosgenite and paralaurionite, while the Italian specimens were found in association with cotunnite and fiedlerite. [4]

Related Research Articles

<span class="mw-page-title-main">Analcime</span> Tectosilicate mineral

Analcime (; from Ancient Greek ἀνάλκιμος (análkimos) 'not strong') or analcite is a white, gray, or colorless tectosilicate mineral. Analcime consists of hydrated sodium aluminium silicate in cubic crystalline form. Its chemical formula is NaAlSi2O6 · H2O. Minor amounts of potassium and calcium substitute for sodium. A silver-bearing synthetic variety also exists (Ag-analcite). Analcime is usually classified as a zeolite mineral, but structurally and chemically it is more similar to the feldspathoids. Analcime is not classified as an isometric crystal, as although the crystal structure appears to be isometric, it is usually off only by a fraction of an angle. However, there are truly isometric samples of the mineral, which makes its classification even more difficult. Due to the differences between the samples being too slight, there's no merit from having multiple species names, so as a result analcime is a common example for minerals occurring in multiple crystal systems and space groups. It was first described by French geologist Déodat de Dolomieu, who called it zéolithe dure, meaning hard zeolite. It was found in lava in Cyclops, Italy. The mineral is IMA approved, and had been grandfathered, meaning the name analcime is believed to refer to a valid species til this day.

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Wulfenite</span> Molybdate mineral

Wulfenite is a lead molybdate mineral with the formula PbMoO4. It often occurs as thin tabular crystals with a bright orange-red to yellow-orange color, sometimes brown, although the color can be highly variable. In its yellow form it is sometimes called "yellow lead ore".

<span class="mw-page-title-main">Torbernite</span> Copper uranyl phosphate mineral

Torbernite, also known as chalcolite, is a relatively common mineral with the chemical formula Cu[(UO2)(PO4)]2(H2O)12. It is a radioactive, hydrated green copper uranyl phosphate, found in granites and other uranium-bearing deposits as a secondary mineral. The chemical formula of torbernite is similar to that of autunite in which a Cu2+ cation replaces a Ca2+ cation. Torbernite tends to dehydrate to metatorbernite with the sum formula Cu[(UO2)(PO4)]2(H2O)8.

<span class="mw-page-title-main">Boulangerite</span> Sulfosalt mineral: lead antimony sulfide

Boulangerite or antimonbleiblende is an uncommon monoclinic orthorhombic sulfosalt mineral, lead antimony sulfide, formula Pb5Sb4S11. It was named in 1837 in honor of French mining engineer Charles Boulanger (1810–1849), and had been a valid species since pre-IMA. It was first described prior to 1959, and is now grandfathered.

<span class="mw-page-title-main">Nickel–Strunz classification</span> Scheme for categorizing minerals

Nickel–Strunz classification is a scheme for categorizing minerals based upon their chemical composition, introduced by German mineralogist Karl Hugo Strunz in his Mineralogische Tabellen (1941). The 4th and the 5th edition was also edited by Christel Tennyson (1966). It was followed by A.S. Povarennykh with a modified classification.

<span class="mw-page-title-main">Halide mineral</span> Minerals with a dominant fluoride, chloride, bromide, or iodide anion

Halide minerals are those minerals with a dominant halide anion. Complex halide minerals may also have polyatomic anions.

<span class="mw-page-title-main">Coloradoite</span> Rare telluride ore

Coloradoite, also known as mercury telluride (HgTe), is a rare telluride ore associated with metallic deposit. Gold usually occurs within tellurides, such as coloradoite, as a high-finess native metal.

<span class="mw-page-title-main">Mendipite</span> Oxyhalide of lead. Rare mineral found in the Mendip Hills

Mendipite is a rare mineral that was named in 1939 for the locality where it is found, the Mendip Hills in Somerset, England. It is an oxyhalide of lead with formula Pb3Cl2O2.

Pinalite is a rare lead tungstate–chloride mineral with formula: Pb3WO5Cl2.

<span class="mw-page-title-main">Matlockite</span>

Matlockite is a rare lead halide mineral, named after the town of Matlock in Derbyshire, England, where it was first discovered in a nearby mine. Matlockite gives its name to the matlockite group which consists of rare minerals of a similar structure.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

<span class="mw-page-title-main">Diaboleite</span>

Diaboleite is a blue-colored mineral with formula Pb2CuCl2(OH)4. It was discovered in England in 1923 and named diaboleite, from the Greek word διά and boleite, meaning "distinct from boleite". The mineral has since been found in a number of countries.

<span class="mw-page-title-main">Paramelaconite</span> Oxide mineral

Paramelaconite is a rare, black-colored copper(I,II) oxide mineral with formula CuI
2
CuII
2
O3 (or Cu4O3). It was discovered in the Copper Queen Mine in Bisbee, Arizona, about 1890. It was described in 1892 and more fully in 1941. Its name is derived from the Greek word for "near" and the similar mineral melaconite, now known as tenorite.

<span class="mw-page-title-main">Ganophyllite</span> Silicate mineral

Ganophyllite is a phyllosilicate mineral. It was named by Axel Hamberg in 1890 from the Greek words for leaf (φύλλον) and luster (γανωμα); the latter one was chosen due to the lustrous cleavages. The mineral was approved by the IMA in 1959, and it is a grandfathered mineral, meaning its name is still believed to refer to an existing species until this day. Tamaite is the calcium analogue, while eggletonite is the natrium analogue of said mineral.

<span class="mw-page-title-main">Sarcolite</span> Silicate mineral

Sarcolite is a mineral named due to its color. Its name originates from the Greek word sárx (σάρξ), meaning flesh and from the Greek word for stone, líthos (λίθος), for being a mineral. It was first described in 1959, but had been a valid species since 1807. It is grandfathered, meaning the name sarcolite still refers to a valid species till this day. Researchers were able to create lab-grown sarcolites with the same crystal structure and formula, although the lab grown ones show different, uniaxial (-) optical properties.

<span class="mw-page-title-main">Szenicsite</span>

Szenicsite is a copper hydroxy molybdate mineral, named after husband and wife Terry and Marissa Szenics, American mineral collectors who found the first specimens. When it was first discovered in Atacama, Chile, it was thought to be lindgrenite. The occurrence appeared in an isolated area, which was about one cubic meter in size. The mineral occurred in cavities of copper bearing powellite and matrix rich molybdenite. These cavities were filled with a material resembling clay. Outside of the zone the szenicsite crystals grew, copper levels seemed to decrease, and the mineralization changed to lindgrenite. Moving further from the zone, the minerals growing seemed to be lacking copper, and consisted of powellite blebs in the ore. Szenicsite was approved by the IMA in 1993.

<span class="mw-page-title-main">Olmiite</span>

Olmiite is a rare calcium-manganese silicate that was named after an Italian mineralogist called Filippo Olmi. It was approved by the IMA in 2006, being first published in 2007, which makes it a relatively newly discovered mineral. Around 2001, a large amount of specimens believed to be poldervaartite was discovered at the N'Chwaning II mine, which is near the Wessels mine, where the latter was discovered. Only later were the researchers able to determine through their investigations that the two minerals are different, as they are visually indistinguishable. Until Renato Pagano acquired and examined the specimens, seemingly no specific investigation was carried out. Olmiite has been misidentified not only once, but twice. The cream-colored specimens were at first thought to be baryte by the mine geologist.

Uramphite is a rarely-found phosphate mineral in the "phosphate, arsenate and vanadate" mineral class with chemical composition (NH4)2[UO2PO4]2·6H2O from which it is seen to be a hydrated ammonium uranyl phosphate.

References

  1. 1 2 3 S., Merlino; M., Pasero; N., Perchiazzi; M., Gianfagna (1995). "X-ray and electron diffraction study penfieldite: average structure and multiple cells". Mineralogical Magazine. 59 (395). Dipartimento di Scienze della Terra: 341. Bibcode:1995MinM...59..341M. CiteSeerX   10.1.1.621.2343 . doi:10.1180/minmag.1995.059.395.17. S2CID   97497665.
  2. 1 2 3 4 "Penfieldite Mineral Data". www.webmineral.com. Retrieved 2022-06-07.
  3. 1 2 "Penfieldite". www.mindat.org. Retrieved 2022-06-07.
  4. 1 2 "Penfieldite" (PDF). Handbook of Mineralogy. Mineralogical Society of America.