Perfluorocarbon tracer

Last updated

Perfluorocarbon tracers (PFTs) are a range of perfluorocarbons used in flow tracers and other tracing applications. They are used by releasing the PFT at a certain point, and determining the concentration of that PFT at another set of points, allowing the flow from the source to the points to be determined.

Contents

Properties

PFTs are believed to be non-toxic [ citation needed ] and chemically inert, clear, colourless liquids. They are non-flammable and nonradioactive compounds that do not occur in nature at all, so background levels are very low, but they can be detected at extremely low concentrations.

There is a range of PFTs available commercially, allowing the experimenter to release different PFTs at the same time. Cyclic perfluorocarbons, such as perfluoromethylhexane and perfluoro-1,3-dimethylcyclohexane, are generally believed to be better than acyclic ones as they can be detected at lower levels.

Procedure

The PFT can be released in a variety of ways, depending on the application, and may be as simple as spraying it into the air. Samples are then collected at set times and locations, and either taken to a laboratory for analysis, or analysed in the field.

Analysis of the samples typically involves three parts; preparation, chromatography and detection. Preparation involves removal of other impurities, for example, mixing with hydrogen then passing over a catalyst to convert oxygen to water, which is then removed with silica gel. The sample is then admitted to a gas chromatograph. This separates the different PFTs, so a concentration value can be determined for each one.

There are two ways in which the PFTs are then detected; using an electron capture detector or negative ion mass spectrometry. Both techniques involve bombarding the sample with electrons, and measuring the negative ions produced. Perfluorocarbons have a particularly high affinity for electrons, so are detected in low concentrations.

Alternatively, the chromatography can be omitted, and the different PFTs determined from their different masses in the mass spectrum.

PFTs can be detected in concentrations as low as 1 part in 1015 by volume (1 femtolitre in a litre). [1]

Applications

Oil reservoirs are routinely mapped by injecting a PFT down one borehole and measuring the concentration at adjacent boreholes. In this way, geologists can build up an image of the reservoir.

Traditional underground high-tension cables are constructed either with internal oil ducts or channels or by the use of a pipe through which the insulated conductor is installed. In either design, the system is then filled with pressurised, de-gassed oil. The oil's primary function is to improve the insulating properties of the cable; but occasionally, leaks can occur through cable joints, oil system fittings or cable sheath damage. The leak is initially identified by the loss of liquid from the system, and its location involves engineers digging up the road, freezing a section of the cable and seeing if the level is still going down, then choosing a new point to dig and re-freeze, which could take several holes to isolate the leak. If a PFT is injected into the oil, there will be a relatively high concentration of PFT above the leak, which can be pin-pointed to within a few feet, requiring only a single hole to be dug right where the leak is. [2]

PFTs have been used to follow air movement, for tracing the flow of pollutants, for example, the Big Bend Regional Aerosol and Visibility Observational study, [3] measuring the effectiveness of ventilation and studying the possible effects of terrorist attacks (for example in New York ). [4]

PFTs have even been used to track ransom money after a kidnapping. [5]

Related Research Articles

<span class="mw-page-title-main">Analytical chemistry</span> Study of the separation, identification, and quantification of matter

Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

In petroleum exploration and development, formation evaluation is used to determine the ability of a borehole to produce petroleum. Essentially, it is the process of "recognizing a commercial well when you drill one".

<span class="mw-page-title-main">Mass spectrometry</span> Analytical technique based on determining mass to charge ratio of ions

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Electron ionization</span> Ionization technique

Electron ionization is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard ionization method, since it uses highly energetic electrons to produce ions. This leads to extensive fragmentation, which can be helpful for structure determination of unknown compounds. EI is the most useful for organic compounds which have a molecular weight below 600. Also, several other thermally stable and volatile compounds in solid, liquid and gas states can be detected with the use of this technique when coupled with various separation methods.

A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide. By virtue of its radioactive decay, it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from reactants to products. Radiolabeling or radiotracing is thus the radioactive form of isotopic labeling. In biological contexts, experiments that use radioisotope tracers are sometimes called radioisotope feeding experiments.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC–MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC–MS include drug detection, fire investigation, environmental analysis, explosives investigation, food and flavor analysis, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC–MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

Well logging, also known as borehole logging is the practice of making a detailed record of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface or on physical measurements made by instruments lowered into the hole. Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies.

<span class="mw-page-title-main">Liquid chromatography–mass spectrometry</span> Analytical chemistry technique

Liquid chromatography–mass spectrometry (LC–MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography – MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify each separated component. MS is not only sensitive, but provides selective detection, relieving the need for complete chromatographic separation. LC–MS is also appropriate for metabolomics because of its good coverage of a wide range of chemicals. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC–MS may be applied in a wide range of sectors including biotechnology, environment monitoring, food processing, and pharmaceutical, agrochemical, and cosmetic industries. Since the early 2000s, LC–MS has also begun to be used in clinical applications.

<span class="mw-page-title-main">Residual gas analyzer</span>

A residual gas analyzer (RGA) is a small and usually rugged mass spectrometer, typically designed for process control and contamination monitoring in vacuum systems. When constructed as a quadrupole mass analyzer, there exist two implementations, utilizing either an open ion source (OIS) or a closed ion source (CIS). RGAs may be found in high vacuum applications such as research chambers, surface science setups, accelerators, scanning microscopes, etc. RGAs are used in most cases to monitor the quality of the vacuum and easily detect minute traces of impurities in the low-pressure gas environment. These impurities can be measured down to Torr levels, possessing sub-ppm detectability in the absence of background interferences.

<span class="mw-page-title-main">Fast protein liquid chromatography</span>

Fast protein liquid chromatography (FPLC) is a form of liquid chromatography that is often used to analyze or purify mixtures of proteins. As in other forms of chromatography, separation is possible because the different components of a mixture have different affinities for two materials, a moving fluid and a porous solid. In FPLC the mobile phase is an aqueous buffer solution. The buffer flow rate is controlled by a positive-displacement pump and is normally kept constant, while the composition of the buffer can be varied by drawing fluids in different proportions from two or more external reservoirs. The stationary phase is a resin composed of beads, usually of cross-linked agarose, packed into a cylindrical glass or plastic column. FPLC resins are available in a wide range of bead sizes and surface ligands depending on the application.

Isidor Sauers (born 1948) is an Austrian-born American who is a physicist at the Oak Ridge National Laboratory in Tennessee. He is a specialist on the properties of Sulfur hexafluoride (SF6), with an important patent and over 60 peer-reviewed academic papers.

Dissolved gas analysis (DGA) is an examination of electrical transformer oil contaminants. Insulating materials within electrical equipment liberate gases as they slowly break down over time. The composition and distribution of these dissolved gases are indicators of the effects of deterioration, such as pyrolysis or partial discharge, and the rate of gas generation indicates the severity. DGA is beneficial to a preventive maintenance program.

Dye tracing is a method of tracking and tracing various flows using dye as a flow tracer when added to a liquid. Dye tracing may be used to analyse the flow of the liquid or the transport of objects within the liquid. Dye tracking may be either qualitative, showing the presence of a particular flow, or quantitative, when the amount of the traced dye is measured by special instruments.

Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration, sample phase, and composition of the analyte solution. Quite possibly the most important consideration in sample preparation is knowing what phase the sample must be in for analysis to be successful. In some cases the analyte itself must be purified before entering the ion source. In other situations, the matrix, or everything in the solution surrounding the analyte, is the most important factor to consider and adjust. Often, sample preparation itself for mass spectrometry can be avoided by coupling mass spectrometry to a chromatography method, or some other form of separation before entering the mass spectrometer. In some cases, the analyte itself must be adjusted so that analysis is possible, such as in protein mass spectrometry, where usually the protein of interest is cleaved into peptides before analysis, either by in-gel digestion or by proteolysis in solution.

Pipeline leak detection is used to determine if and in some cases where a leak has occurred in systems which contain liquids and gases. Methods of detection include Active Micropulse Sonar, hydrostatic testing, tracer gas leak detection, infrared, and laser technology after pipeline erection and leak detection during service.

<span class="mw-page-title-main">Perfluoro-1,3-dimethylcyclohexane</span> Chemical compound

Perfluoro-1,3-dimethylcyclohexane is a fluorocarbon liquid—a perfluorinated derivative of the hydrocarbon 1,3-dimethylcyclohexane. It is chemically and biologically inert.

<span class="mw-page-title-main">Perfluoromethylcyclohexane</span> Chemical compound

Perfluoromethylcyclohexane is a fluorocarbon liquid—a perfluorinated derivative of the hydrocarbon methylcyclohexane. It is chemically and biologically inert.

Perfluoromethyldecalin is a fluorocarbon liquid—a perfluorinated derivative of the hydrocarbon methyldecalin. It is chemically and biologically inert. It is mainly of interest as a blood substitute, exploiting the high solubility of air in this solvent.

References

  1. "Instrumentation". University of Bristol Atmospheric Chemistry Research Group.
  2. Ghafurian, R.; Dietz, R.N.; Rodenbaugh, T.; Dominguez, J.; Tai, N. (1999). "Leak location in fluid filled cables using the PFT method" (PDF). IEEE Transactions on Power Delivery. 14: 18–22. doi:10.1109/61.736673.
  3. Schichtel, Bret A.; Barna, Michael G.; Gebhart, Kristi A.; Malm, William C. (2005). "Evaluation of a Eulerian and Lagrangian air quality model using perfluorocarbon tracers released in Texas for the BRAVO haze study" (PDF). Atmospheric Environment. 39 (37): 7044. Bibcode:2005AtmEn..39.7044S. doi:10.1016/j.atmosenv.2005.08.015.
  4. "Anatomy on a test on terror" (PDF).
  5. "Demonstration of the Use of an Encapsulated Perfluorocarbon Vapor Taggant to Track and Detect Currency or Contraband, Final Report" (PDF).