Philip Moriarty

Last updated

Philip Moriarty Philipmoriarty.jpg
Philip Moriarty

Philip Moriarty (born 1968 in London) is an Irish physicist and professor of physics at the University of Nottingham. He is known for his work on nanostructures and his collaboration with Brady Haran on the YouTube video series Sixty Symbols.

Contents

Education and career

From 1990 to 1994, Moriarty attended the School of Physical Sciences of Dublin City University, where he received his doctorate in 1994 in physics. Until 1997, he was a postdoctoral researcher in the field of physics at the University of Nottingham. He became a lecturer in the Department of Physics until 2003. Since 2005 he has been Professor of Physics at the School of Physics and Astronomy, University of Nottingham. [1]

Moriarty is one of the collaborating members of the Sixty Symbols Internet video series. Brady Haran asks scientists about a physics symbol (e.g. Ψ) in each episode, and then he and the community of Sixty Symbols discuss it and a related topic. [2] In 2016 Haran, Michael Merrifeld and Moriarty were awarded the Kelvin Medal and Prize by the Institute of Physics. The citation was "for innovative and effective promotion of the public understanding of physics through the Sixty Symbols video project." [3]

Moriarty is the author of When the Uncertainty Principle Goes to 11: Or How to Explain Quantum Physics with Heavy Metal. [4] This book was shortlisted for Physics World’s Book Of The Year 2018. [1]

Selected papers

Related Research Articles

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between measurements of quantum subsystems, even when spatially separated

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

<span class="mw-page-title-main">Antihydrogen</span> Exotic particle made of an antiproton and positron

Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in particle accelerators.

<span class="mw-page-title-main">Laser cooling</span> Class of methods for cooling atoms to very low temperatures

In condensed matter physics, laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object absorbs and re-emits a photon its momentum changes. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles.

<span class="mw-page-title-main">Samuel C. C. Ting</span> Nobel prize winning physicist

Samuel Chao Chung Ting is a Chinese-American physicist who, with Burton Richter, received the Nobel Prize in 1976 for discovering the subatomic J/ψ particle. More recently he has been the principal investigator in research conducted with the Alpha Magnetic Spectrometer, a device installed on the International Space Station in 2011.

In physical cosmology, the Alpher–Bethe–Gamow paper, or αβγ paper, was created by Ralph Alpher, then a physics PhD student, his advisor George Gamow and Hans Bethe. The work, which would become the subject of Alpher's PhD dissertation, argued that the Big Bang would create hydrogen, helium and heavier elements in the correct proportions to explain their abundance in the early universe. While the original theory neglected a number of processes important to the formation of heavy elements, subsequent developments showed that Big Bang nucleosynthesis is consistent with the observed constraints on all primordial elements.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions.

Gerald Gabrielse is an American physicist. He is the Board of Trustees Professor of Physics and Director of the Center for Fundamental Physics at Northwestern University, and Emeritus George Vasmer Leverett Professor of Physics at Harvard University. He is primarily known for his experiments trapping and investigating antimatter, measuring the electron g-factor, and measuring the electron electric dipole moment. He has been described as "a leader in super-precise measurements of fundamental particles and the study of anti-matter."

In magnetism, a nanomagnet is a nanoscopic scale system that presents spontaneous magnetic order (magnetization) at zero applied magnetic field (remanence).

<span class="mw-page-title-main">Robert W. Boyd</span> American physicist

Robert William Boyd is an American physicist noted for his work in optical physics and especially in nonlinear optics. He is currently the Canada Excellence Research Chair Laureate in Quantum Nonlinear Optics based at the University of Ottawa, Professor of Physics cross-appointed to the School of Electrical Engineering and Computer Science at the University of Ottawa, and Professor of Optics and Professor of Physics at the University of Rochester.

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

Girsh Blumberg is an Estonian-American physicist working in the experimental physics fields of condensed matter physics, spectroscopy, nano-optics, and plasmonics. Blumberg is an elected fellow of the American Physical Society (APS), an elected Fellow of the American Association for the Advancement of Science (FAAAS) , and a Distinguished Professor of Physics at Rutgers University.

<span class="mw-page-title-main">Time crystal</span> Structure that repeats in time; a novel type or phase of non-equilibrium matter

In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is already in its quantum ground state. Because of this, the motion of the particles does not really represent kinetic energy like other motion; it has "motion without energy". Time crystals were first proposed theoretically by Frank Wilczek in 2012 as a time-based analogue to common crystals – whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged periodically in both space and time. Several different groups have demonstrated matter with stable periodic evolution in systems that are periodically driven. In terms of practical use, time crystals may one day be used as quantum computer memory.

<span class="mw-page-title-main">Steven Cundiff</span>

Steven Cundiff is an American experimental physicist and the Harrison M. Randall collegiate professor of physics at the University of Michigan. His research interests include the production and manipulation of ultrafast pulses, in particular for applications in studying light-matter interactions. Cundiff is a Fellow of American Physical Society, the Optical Society of America, and the Institute of Electrical and Electronics Engineers. He is the co-author of the standard reference for frequency combs titled Femtosecond Optical Frequency Comb: Principle, Operation and Applications.

<span class="mw-page-title-main">Antonio Barone</span> Italian physicist

Antonio Barone was an Italian physicist. He was Emeritus Professor of the Federico II University of Naples and Director of the CNR Cybernetics Institute in Arco Felice (Naples), Italy. He is best known for his work on superconductivity and Josephson effect.

Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states. Such states can be used for quantum metrology, as they can provide a better precision for estimating a rotation angle than classical interferometers.

Applying classical methods of machine learning to the study of quantum systems is the focus of an emergent area of physics research. A basic example of this is quantum state tomography, where a quantum state is learned from measurement. Other examples include learning Hamiltonians, learning quantum phase transitions, and automatically generating new quantum experiments. Classical machine learning is effective at processing large amounts of experimental or calculated data in order to characterize an unknown quantum system, making its application useful in contexts including quantum information theory, quantum technologies development, and computational materials design. In this context, it can be used for example as a tool to interpolate pre-calculated interatomic potentials or directly solving the Schrödinger equation with a variational method.

Jonathan James Finley is a Professor of Physics at the Technical University of Munich in Garching, Germany, where he holds the Chair of Semiconductor Nanostructures and Quantum Systems. His focus is on quantum phenomena in semiconductor nanostructures, photonic materials, dielectric and metallic films, among others, for applications in quantum technology. At such, he made major contributions to the characterization and understanding of the optical, electronic and spintronic properties of quantum dots and wires both from group-IV and II-VI materials and oxides.

Aron Pinczuk was an Argentine-American experimental condensed matter physicist who was professor of physics and professor of applied physics at Columbia University. He was known for his work on correlated electronic states in two dimensional systems using photoluminescence and resonant inelastic light scattering methods. He was a fellow of the American Physical Society, the American Association for the Advancement of Science and the American Academy of Arts and Sciences.

Christopher John Pethick is a British theoretical physicist, specializing in many-body theory, ultra-cold atomic gases, and the physics of neutron stars and stellar collapse.

References

  1. 1 2 "Philip Moriarty" (PDF). The University of Nottingham. Retrieved 17 August 2019.
  2. "The Scientists - Sixty Symbols". Sixty Symbols. Retrieved 17 August 2019.
  3. "2016 Kelvin Medal and prize of the Institute of Physics". Institute of Physics. Retrieved 28 August 2019.
  4. Moriarty, Philip (31 July 2018). When the Uncertainty Principle Goes to 11: Or How to Explain Quantum Physics with Heavy Metal. BenBella Books. ISBN   978-1944648527.