Philip R. Goode

Last updated
Philip R. Goode
Goode 2020.jpg
Philip Goode (2020)
Born (1943-01-04) January 4, 1943 (age 81)
Nationality American
Alma mater Cal - Berkeley, A.B. Physics
Rutgers University, Ph.D. Theoretical Nuclear Physics
Known forSolar Physics, Helioseismology, Asteroseismology, Climate Science, Nuclear Theory
SpouseFrancine Tucker Goode
ChildrenPamela and Gregory
Grandchildren: Max and Sophie
Scientific career
FieldsTheoretical and Observational Astrophysics; Theoretical Nuclear Physics
Institutions
Doctoral advisor Larry Zamick
Other academic advisors

Philip R. Goode is an American theoretical physicist also working in observational astronomy and its instrumentation. He is a Distinguished Research Professor of Physics at New Jersey Institute of Technology (NJIT) with an H-index > 60. His career divides into five overlapping periods as follows:

Contents

Education

Goode's A.B. in physics is from University of California, Berkeley. His Ph. D. and postdoctoral training were in theoretical nuclear physics from Rutgers University and the University of Rochester, respectively.

Notable accomplishments

GST/BBSO

Goode conceived, designed, raised the funds for, assembled the team, and led the construction of the first facility-class, ground-based optical solar telescope built in the U.S. in a generation.

The telescope enjoyed first light in January 2009 and was the world’s largest aperture solar telescope until DKIST enjoys first light in December 2019. The telescope was named the Goode Solar Telescope (GST) in July 2017. More than 200 publications have used GST data since its first light until 2022. The off-axis GST is outfitted with three state-of-the-art spectro-polarimeters covering visible up to mid-infrared wavelengths. Since 2010, the GST has been in regular operation with high order adaptive optics (AO) corrected light feeding state-of-the-art Fabry-Perot, visible and near-IR light, spectro-polarimeters in which the GST was used in a series of high resolution observations elucidating unforeseen, significant solar dynamics. In 2016, the BBSO multi-conjugate AO (MCAO) project succeeded in making the first-ever MCAO-corrected observations of the Sun that showed a clearly/visibly widened (roughly trebled) corrected field of view compared to quasi-simultaneous observations with classical adaptive optics. [1] The BBSO MCAO system, called Clear, is characterized by three deformable mirrors (DMs) conjugated to different altitudes above the GST. Clear is now a facility instrument in BBSO holding lock as well as its single DM antecedent (classical AO). By 2021, Clear had been extended successfully into the near-infrared, and Clear was the only MCAO system operating on a solar telescope. Further, as of 2023, Clear was the only MCAO system, day or night, that employs three DMs, which enabled full, wide field coverage resulting from continuous AO corrections from the ground to 10 km above the telescope. Goode was the principal investigator (PI) on all the aforementioned projects in BBSO and his current efforts are concentrated on off-limb single DM AO using prominence light as the ``guide-star". This system is now operational and being fine-tuned.

Helioseismology

Active in helioseismology for over twenty years beginning in the early 1980s. The efforts in which he was involved include the first determinations of the Sun’s internal rotation, [2] its internal differential rotation [3] and determining limits on buried magnetic field and demonstrating that the Sun rotates on a single axis, [4] determining the Sun’s seismic radius. [5] Observationally, Goode led the effort that ultimately showed solar oscillations are driven, in part, by the noise made in the ubiquitous, continuous collapses of the dark inter-granular lanes. [6] Also in the 1990s, he teamed to develop a seismic model of the Sun's interior, which was used to place strong limits on solar opacities and nuclear-reaction cross sections in the p-p chain, as well as demonstrating that there is no astrophysical solution to the sun’s neutrino deficit but rather the deficit is in the province of particle physics, which was subsequently shown experimentally. Further, the seismic age of the Sun (4.6 GY) was determined and is the first confirmation of the age of the solar system from meteorite data. [7] In his last work in helioseismology, it was determined, self-consistently, that the Sun's surface shrinks and cools by insignificant amounts as the activity cycle rises from minimum to maximum activity/irradiance after a complex competition between thermal and magnetic effects in the Sun’s outermost layers. [8] This last work overlapped in time with the beginning of the construction of the GST.

Climate Science

The Earth’s climate depends critically on its reflectance. Project Earthshine (PE) led by Goode in Big Bear for more than twenty years reported in 2001 the first modern measurement of Earth’s albedo (~0.30) [9] and later the PE team reported sixteen years of terrestrial albedo variations in which the variations were precisely consistent with overlapping (2000-2013) CERES (Clouds and the Earth’s Radiant Energy System) satellite data with the same inter-annual variations. The Earth’s reflectance shows no climatologically significant trend over the period of 1998-2014. [10] In 2021, the earthshine team reported twenty years (1998-2017) of terrestrial albedo variations [11] in which the variations were consistent with overlapping (2000-2017) CERES satellite data with nearly the same inter-annual variations. Unlike the period 1998-2014, the last three years of data, 2015-2017 showed a sharp drop in albedo (~0.5 W/m2) that alone could cause climatologically significant changes. This effect is also seen in the CERES data, and is primarily attributed to a reversal of the Pacific Decadal Oscillation yielding a precipitous warming of the Pacific coast seas off the Americas, somehow reducing the overhead cloud cover thereby sharply decreasing the albedo for the first time since the warming hiatus of this century began. Climate models do not replicate this surprise decrease and it is, thus, unclear how the climate system disposes of this extra energy.

Theoretical Nuclear Physics

His earliest work was in theoretical nuclear physics (1967-1982) in which he concentrated on the nature of the nucleon-nucleon interaction inside a nucleus. He also explained a number of experimentally measured dynamical phenomena of nuclei, like why 56Ni decays so slowly. [12] It is the energy from this unexpected anomaly of a doubly magic nucleus decaying that cause Type I supernovae to shine.

Mentoring

Among 32 students and postdocs Goode supervised, nearly all have careers in various technological fields utilizing their education/training. Of these, 16 have faculty/national center tenure track/tenured positions. Senior among the latter group are Thomas Rimmele (DKIST Director, U.S. National Solar Observatory) and Prof. Enric Pallé (former Director of Research at Instituto de Astrofisica de Canarias, Spain), as well as leaders of solar groups around the world including Prof. Peter Gallagher (Dublin Institute for Advanced Studies, Ireland), Prof. Jongchul Chae (Seoul National University, South Korea), Prof. Haisheng Ji (Purple Mountain Observatory, Nanjing, China), Prof. Carsten Denker (Leibniz-Institut for Astrophysics, Potsdam, Germany), & Prof. Wenda Cao (Director, BBSO). Aside: First NJIT undergrad senior thesis (hydrodynamic limits on the sun's buried magnetic field) Goode supervised was by Glenn Gaffney who became Director of Science and Technology at the CIA.

Leadership

In the mid-1990s, Goode founded the Center for Solar-Terrestrial Research (CSTR) at NJIT (originally called the Center for Solar Research until the addition of the terrestrial component in 2002). Goode grew the NJIT solar-terrestrial program from a single faculty member to seven tenured solar-terrestrial faculty with facilities in California (Big Bear Solar Observatory and the Frequency Agile Solar Radiotelescope array in Owens Valley), South America (Fabry-Perot interferometers to probe the terrestrial atmosphere under the equatorial electrojet), geospace instrumentation across Antarctica (i.e., at the South Pole and McMurdo Stations, and at the Automatic Geophysical Observatories (AGOs) deployed across the continental ice-shelf, the Jeffer Observatory at Jenny Jump State Forrest in NJ (which includes a molecular/aerosol lidar system and 48” optical telescope), and automated earthshine telescopes in Big Bear and Tenerife. Most recently, CSTR was the PI institution for medium energy ring current particle instruments that flew (2012-2019) on the twin NASA Van Allen Belt Probe spacecraft.

Goode was the founding director and led CSTR from 1995-2014 and BBSO from its transfer from Caltech to NJIT in 1997 to 2013. He chaired the NJIT physics department from 1984-1990 building the applied physics degree programs.

Athletics

Goode won three varsity letters in swimming at Cal-Berkeley and held multiple school records in the butterfly and medley relay in the 1960s. In the mid-1960s, he was AAU butterfly champion of New Jersey. In the 1970s, 1980s and 2020s, he competed in master’s swimming and won multiple U.S. national championships in the butterfly, individual medley, and distance freestyle.

Fellowships

Goode is a Fellow of:

Honors and awards

Related Research Articles

<span class="mw-page-title-main">Planetshine</span> Illumination by reflected sunlight from a planet

Planetshine is the dim illumination, by sunlight reflected from a planet, of all or part of the otherwise dark side of any moon orbiting the body. Planetlight is the diffuse reflection of sunlight from a planet, whose albedo can be measured.

<span class="mw-page-title-main">Solar cycle</span> Periodic change in the Suns activity

The solar cycle, also known as the solar magnetic activity cycle, sunspot cycle, or Schwabe cycle, is a nearly periodic 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the Sun's surface. Over the period of a solar cycle, levels of solar radiation and ejection of solar material, the number and size of sunspots, solar flares, and coronal loops all exhibit a synchronized fluctuation from a period of minimum activity to a period of a maximum activity back to a period of minimum activity.

<span class="mw-page-title-main">Solar luminosity</span> Unit of light in stars and galaxies

The solar luminosity (L) is a unit of radiant flux conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun.

<span class="mw-page-title-main">Astrophysics</span> Subfield of astronomy

Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–what they are, rather than where they are." Among the subjects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

Helioseismology, a term coined by Douglas Gough, is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology, or asteroseismology, which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The modern field is separated into global helioseismology, which studies the Sun's resonant modes directly, and local helioseismology, which studies the propagation of the component waves near the Sun's surface.

Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3:

<span class="mw-page-title-main">Global Oscillations Network Group</span>

The Global Oscillation Network Group (GONG) is a worldwide network of six identical telescopes, designed to have 24/7 observations of the Sun. The network serves multiple purposes, including the provision of operation data for use in space weather prediction, and the study of solar internal structure and dynamics using helioseismology.

<span class="mw-page-title-main">Richard B. Dunn Solar Telescope</span> Optical telescope dedicated to observing the Sun

The Dunn Solar Telescope also known as the Richard B. Dunn Solar Telescope is a unique vertical-axis solar telescope, in Sunspot, New Mexico located at Sacramento Peak, New Mexico. It is the main telescope at the Sunspot Solar Observatory, operated by New Mexico State University in partnership with the National Solar Observatory through funding by the National Science Foundation, the state of New Mexico and private funds from other partners. The Dunn Solar Telescope specializes in high-resolution imaging and spectroscopy to help astrophysicists worldwide obtain a better understanding of how the Sun affects the Earth. Completed in 1969, it was upgraded with high-order adaptive optics in 2004 and remains a highly versatile astrophysical observatory which serves as an important test platform for developing new instrumentation and technologies. The Dunn Solar Telescope, located in Sunspot, New Mexico, is a vertical-axis solar telescope that specializes in high-resolution imaging and spectroscopy. It was completed in 1969 and received a significant upgrade with high-order adaptive optics in 2004.

<span class="mw-page-title-main">Big Bear Solar Observatory</span> University-based astronomical facility

Big Bear Solar Observatory (BBSO) is a university-based solar observatory in the United States. It is operated by New Jersey Institute of Technology (NJIT). BBSO has a 1.6-meter (5.2 ft) clear aperture Goode Solar Telescope (GST), which has no obscuration in the optical train. BBSO is located on the north side of Big Bear Lake in the San Bernardino Mountains of southwestern San Bernardino County, California, U.S., approximately 120 kilometers (75 mi) east of downtown Los Angeles. The telescopes and instruments at the observatory are designed and employed specifically for studying the activities and phenomena of the Sun.

<span class="mw-page-title-main">Moreton wave</span> Large-scale chromospheric perturbation

A Moreton wave, Solar Tsunami, or Moreton-Ramsey wave is the chromospheric signature of a large-scale solar corona shock wave. Described as a kind of solar "tsunami", they are generated by solar flares. They are named for American astronomer Gail Moreton, an observer at the Lockheed Solar Observatory in Burbank, and Harry E. Ramsey, an observer who spotted them in 1959 at The Sacramento Peak Observatory. He discovered them in time-lapse photography of the chromosphere in the light of the Balmer alpha transition.

<span class="mw-page-title-main">Coronal loop</span> Arch-like structure in the Suns corona

In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's atmosphere made up of relatively dense plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the transition region and lower corona. They typically form and dissipate over periods of seconds to days and may span anywhere from 1 to 1,000 megametres in length.

<span class="mw-page-title-main">Owens Valley Solar Array</span>

The Owens Valley Solar Array (OVSA), also known as Expanded Owens Valley Solar Array (EOVSA), is an astronomical radio telescope array, located at Owens Valley Radio Observatory (OVRO), near Big Pine, California, with main interests in studying the physics of the Sun. The instruments of the observatory are designed and employed specifically for studying the activities and phenomena of our solar system's sun. Other solar dedicated instruments operated on the site include the Solar Radio Burst Locator (SRBL), the FASR Subsystem Testbed (FST), and the Korean SRBL (KSRBL). The OVSA is operated by the New Jersey Institute of Technology (NJIT), which also operates the Big Bear Solar Observatory.

In astronomy, a phase curve describes the brightness of a reflecting body as a function of its phase angle. The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun.

Douglas Owen Gough FRS is a British astronomer, Professor Emeritus of Theoretical Astrophysics in the University of Cambridge, and Leverhulme Emeritus Fellow.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

<span class="mw-page-title-main">Supra-arcade downflows</span> Sunward-traveling plasma voids observed in the Suns outer atmosphere

Supra-arcade downflows (SADs) are sunward-traveling plasma voids that are sometimes observed in the Sun's outer atmosphere, or corona, during solar flares. In solar physics, arcade refers to a bundle of coronal loops, and the prefix supra indicates that the downflows appear above flare arcades. They were first described in 1999 using the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. SADs are byproducts of the magnetic reconnection process that drives solar flares, but their precise cause remains unknown.

Jiong Qiu (邱炯) is a Chinese-born American astrophysicist who won the Karen Harvey Prize for her work in solar flares.

<span class="mw-page-title-main">Goode Solar Telescope</span> Scientific facility in Big Bear Lake, California, U.S.

The Goode Solar Telescope (GST) is a scientific facility for studies of the Sun named after Philip R. Goode. It was the solar telescope with the world's largest aperture in operation for more than a decade. Located in Big Bear Lake; California, the Goode Solar Telescope is the main telescope of the Big Bear Solar Observatory operated by the New Jersey Institute of Technology (NJIT). Initially named New Solar Telescope (NST), first engineering light was obtained in December 2008, and scientific observations of the Sun began in January 2009. On July 17, 2017, the NST was renamed in honor of Goode, a former, and founding director of NJIT's Center for Solar-Terrestrial Research and the principal investigator of the facility. Goode conceived, raised the funds, and assembled the team that built and commissioned the telescope, and it was the highest resolution solar telescope in the world (until the end of 2019) and the first facility class solar telescope built in the U.S. in a generation.

Solar radio emission refers to radio waves that are naturally produced by the Sun, primarily from the lower and upper layers of the atmosphere called the chromosphere and corona, respectively. The Sun produces radio emissions through four known mechanisms, each of which operates primarily by converting the energy of moving electrons into electromagnetic radiation. The four emission mechanisms are thermal bremsstrahlung (braking) emission, gyromagnetic emission, plasma emission, and electron-cyclotron maser emission. The first two are incoherent mechanisms, which means that they are the summation of radiation generated independently by many individual particles. These mechanisms are primarily responsible for the persistent "background" emissions that slowly vary as structures in the atmosphere evolve. The latter two processes are coherent mechanisms, which refers to special cases where radiation is efficiently produced at a particular set of frequencies. Coherent mechanisms can produce much larger brightness temperatures (intensities) and are primarily responsible for the intense spikes of radiation called solar radio bursts, which are byproducts of the same processes that lead to other forms of solar activity like solar flares and coronal mass ejections.

References

  1. Schmidt, Dirk; Gorceix, Nicolas; Goode, Philip R; Marino, Jose; Rimmele, Thomas; Berkefeld, Thomas; Woger, Friedrich; Zhang, Xianyu; Rigaut, Francois; von der Luhe, Oskar (January 2017). "Clear widens the field for observations of the Sun with multi-conjugate adaptive optics". Astronomy and Astrophysics. 597: L8. Bibcode:2017A&A...597L...8S. doi: 10.1051/0004-6361/201629970 .
  2. Duvall, Jr, T. L.; Dziembowski, W. A.; Goode, P. R.; Gough, D. O.; Harvey, J. W.; Leibacher, J. W. (July 1984). "Internal Rotation of the Sun". Nature. 310 (5972): 22. Bibcode:1984Natur.310...22D. doi:10.1038/310022a0. S2CID   4310140.
  3. Dziembowski, W. A.; Goode, Philip R.; Libbrecht, K. G. (February 1989). "The Radial Gradient in the Sun's Rotation". The Astrophysical Journal. 337: L53. Bibcode:1989ApJ...337L..53D. doi:10.1086/185377.
  4. Goode, Philip R.; Thompson, Michael J. (August 1992). "The Effect of an Inclined Magnetic Field on Solar Oscillation Frequencies". The Astrophysical Journal. 395: 307. Bibcode:1992ApJ...395..307G. doi:10.1086/171653.
  5. Schou, J.; Kosovichev, A. G.; Goode, P. R.; Dziembowski, W. A. (November 1997). "Determination of the Sun's Seismic Radius from the SOHO Michelson Doppler Imager". The Astrophysical Journal. 489: L197. Bibcode:1997ApJ...489L.197S. doi: 10.1086/316782 .
  6. Goode, Philip R.; Strous, Louis H.; Rimmele, Thomas R.; Stebbins, Robin T. (March 1998). "On the Origin of Solar Oscillations". The Astrophysical Journal. 495 (1): L27. arXiv: astro-ph/9801008 . Bibcode:1998ApJ...495L..27G. doi:10.1086/311203. S2CID   119092656.
  7. Dziembowski, W. A.; Goode, Philip R.; Pamyatnykh, A. A.; Sienkiewicz, R. (September 1994). "A Seismic Model of the Sun's Interior". The Astrophysical Journal. 432: 417. Bibcode:1994ApJ...432..417D. doi: 10.1086/174580 .
  8. Dziembowski, W. A.; Goode, P. R. (May 2005). "Sources of Oscillation Frequency Increase with Rising Solar Activity". The Astrophysical Journal. 625 (1): 548–555. arXiv: astro-ph/0503266 . Bibcode:2005ApJ...625..548D. doi:10.1086/429712. S2CID   16565840.
  9. Goode, P. R.; Qiu, J.; Yurchyshyn, V.; Hickey, J.; Chu, M. -C.; Kolbe, E.; Brown, C. T.; Koonin, S. E. (2001). "Earthshine observations of the Earth's reflectance". Geophysical Research Letters. 28 (9): 1671. Bibcode:2001GeoRL..28.1671G. doi:10.1029/2000GL012580.
  10. Palle, E.; Goode, P. R.; Montanes-Rodriguez, P.; Shumko, A.; Gonzalez-Merino, B.; Martinez-Lombilla, C.; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E. (May 2016). "Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations". Geophysical Research Letters. 43 (9): 4531. arXiv: 1604.05880 . Bibcode:2016GeoRL..43.4531P. doi:10.1002/2016GL068025. S2CID   118352127.
  11. Goode, P. R.; Palle, E.; Shoumko, A.; Shoumko, S.; Montanes-Rodriguez, P.; Koonin, S. E. (2021). "Earth's Albedo 1998-2017 as Measured from Earthshine". Geophysical Research Letters. 48 (17): 888. Bibcode:2021GeoRL..4894888G. doi: 10.1029/2021GL094888 .
  12. Goode, Philip; Zamick, Larry (May 1969). "Why Does 56Ni Decay so Slowly?". Physical Review Letters. 22 (18): L958. Bibcode:1969PhRvL..22..958G. doi:10.1103/PhysRevLett.22.958.