Phosphate test

Last updated
Phosphate(PO4 3-) test
ClassificationColorimetric method
AnalytesPhosphate

A range of qualitative and quantitative tests have been developed to detect phosphate ions (PO3−4) in solution. Such tests find use in industrial processes, scientific research, and environmental water monitoring.

Contents

Quantitative method

A quantitative method to determine the amount of phosphate present in samples, such as boiler feedwater, is as follows. A measured amount of boiler water is poured into a mixing tube and ammonium heptamolybdate reagent is added. The tube is then stoppered and vigorously shaken. The next step is to add dilute stannous chloride reagent, which has been freshly prepared from concentrated stannous chloride reagent and distilled water, to the mixture in the tube. This will produce a blue colour (due to the formation of molybdenum blue) and the depth of the blue colour indicates the amount of phosphate in the boiler water. The absorbance of the blue solution can be measured with a colorimeter and the concentration of phosphate in the original solution can be calculated. Alternatively, a direct (but approximate) reading of phosphate concentration can be obtained by using a Lovibond comparator. This method for phosphate determination is known as Denigés' method. [1] [2] [3]

Qualitative method

A simple qualitative method to determine the presence of phosphate ions in a sample is as follows. A small amount of the sample is acidified with concentrated nitric acid, to which a little ammonium molybdate is added. The presence of phosphate ions is indicated by the formation of a bright yellow precipitate layer of ammonium phosphomolybdate. The appearance of the precipitate can be facilitated by gentle heating. This test is also used to detect arsenic, a yellow precipitate being formed.

See also

Related Research Articles

<span class="mw-page-title-main">Titration</span> Laboratory method for determining the concentration of an analyte

Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

<span class="mw-page-title-main">ELISA</span> Method to detect an antigen using an antibody and enzyme

The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay is a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand in a liquid sample using antibodies directed against the ligand to be measured. ELISA has been used as a diagnostic tool in medicine, plant pathology, and biotechnology, as well as a quality control check in various industries.

Benedict's reagent is a chemical reagent and complex mixture of sodium carbonate, sodium citrate, and copper(II) sulfate pentahydrate. It is often used in place of Fehling's solution to detect the presence of reducing sugars. The presence of other reducing substances also gives a positive result. Such tests that use this reagent are called the Benedict's tests. A positive test with Benedict's reagent is shown by a color change from clear blue to brick-red with a precipitate.

An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit.

<span class="mw-page-title-main">Gravimetric analysis</span> Quantitative determination of a chemical species based on its mass

Gravimetric analysis describes a set of methods used in analytical chemistry for the quantitative determination of an analyte based on its mass. The principle of this type of analysis is that once an ion's mass has been determined as a unique compound, that known measurement can then be used to determine the same analyte's mass in a mixture, as long as the relative quantities of the other constituents are known.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Tollens' reagent</span> Chemical reagent used to distinguish between aldehydes and ketones

Tollens' reagent is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate, ammonium hydroxide and some sodium hydroxide. It was named after its discoverer, the German chemist Bernhard Tollens. A positive test with Tollens' reagent is indicated by the precipitation of elemental silver, often producing a characteristic "silver mirror" on the inner surface of the reaction vessel.

<span class="mw-page-title-main">Ammonium sulfate</span> Chemical compound

Ammonium sulfate (American English and international scientific usage; ammonium sulphate in British English); (NH4)2SO4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen and 24% sulfur.

<span class="mw-page-title-main">Chemical test</span> Procedure for identifying or quantifying a chemical compound or group

In chemistry, a chemical test is a qualitative or quantitative procedure designed to identify, quantify, or characterise a chemical compound or chemical group.

Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point.

<span class="mw-page-title-main">Chloroplatinic acid</span> Chemical compound

Chloroplatinic acid (also known as hexachloroplatinic acid) is an inorganic compound with the formula [H3O]2[PtCl6](H2O)x (0 ≤ x ≤ 6). A red solid, it is an important commercial source of platinum, usually as an aqueous solution. Although often written in shorthand as H2PtCl6, it is the hydronium (H3O+) salt of the hexachloroplatinate anion (PtCl2−
6
). Hexachloroplatinic acid is highly hygroscopic.

A nitrate test is a chemical test used to determine the presence of nitrate ion in solution. Testing for the presence of nitrate via wet chemistry is generally difficult compared with testing for other anions, as almost all nitrates are soluble in water. In contrast, many common ions give insoluble salts, e.g. halides precipitate with silver, and sulfate precipitate with barium.

The Kjeldahl method or Kjeldahl digestion (Danish pronunciation:[ˈkʰelˌtɛˀl]) in analytical chemistry is a method for the quantitative determination of a sample's organic nitrogen plus ammonia/ammonium. (NH3/NH4+). Without modification, other forms of inorganic nitrogen, for instance nitrate, are not included in this measurement. Using an empirical relation between Kjeldahl nitrogen and protein, it is an important method for indirectly quantifying protein content of a sample. This method was developed by Johan Kjeldahl in 1883.

<span class="mw-page-title-main">Wet chemistry</span> Form of analytical chemistry

Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. The term wet chemistry is used as most analytical work is done in the liquid phase. Wet chemistry is also known as bench chemistry, since many tests are performed at lab benches.

In analytical chemistry, quantitative analysis is the determination of the absolute or relative abundance of one, several or all particular substance(s) present in a sample.

<span class="mw-page-title-main">Ammonium heptamolybdate</span> Chemical compound

Ammonium heptamolybdate is the inorganic compound whose chemical formula is (NH4)6Mo7O24, normally encountered as the tetrahydrate. A dihydrate is also known. It is a colorless solid, often referred to as ammonium paramolybdate or simply as ammonium molybdate, although "ammonium molybdate" can also refer to ammonium orthomolybdate, (NH4)2MoO4, and several other compounds. It is one of the more common molybdenum compounds.

<span class="mw-page-title-main">Molybdenum blue</span> Pigment

Molybdenum blue is a term applied to:

<span class="mw-page-title-main">Urine test strip</span> Diagnostic tool used in urinalysis

A urine test strip or dipstick is a basic diagnostic tool used to determine pathological changes in a patient's urine in standard urinalysis.

In analytical chemistry, argentometry is a type of titration involving the silver(I) ion. Typically, it is used to determine the amount of chloride present in a sample. The sample solution is titrated against a solution of silver nitrate of known concentration. Chloride ions react with silver(I) ions to give the insoluble silver chloride:

<i>N</i>-(1-Naphthyl)ethylenediamine Chemical compound

N-(1-Naphthyl)ethylenediamine is an organic compound. It is commercially available as part of Griess reagents, which find application in quantitative inorganic analysis of nitrates, nitrite and sulfonamide in blood, using the Griess test.

References

  1. Wiley Interscience
  2. "Qualitative Analysis".
  3. "Qualitative Analysis of Some Common Ions Class Notes". Archived from the original on 2013-06-26. Retrieved 2013-06-18.