Physical coefficient

Last updated

A physical coefficient is an important number that characterizes some physical property of a technical or scientific object. A coefficient also has a scientific reference which is the reliance on force.

Stoichiometric coefficient of a chemical compound

To find the coefficient of a chemical compound, you must balance the elements involved in it. For example, water: H2O. It just so happens that hydrogen (H) and oxygen (O) are both diatomic molecules, thus we have H2 and O2. To form water, one of the O atoms breaks off from the O2 molecule and react with the H2 compound to form H2O. But, there is one oxygen atom left. It reacts with another H2 molecule. Since it took two of each atom to balance the compound, we put the coefficient 2 in front of H2O: 2 H2O. The total reaction is thus 2 H2 + O2 → 2 H2O.

Examples of physical coefficients

  1. Coefficient of thermal expansion (thermodynamics) (dimensionless) - Relates the change in temperature to the change in a material's dimensions.
  2. Partition coefficient (KD) (chemistry) - The ratio of concentrations of a compound in two phases of a mixture of two immiscible solvents at equilibrium.
  3. Hall coefficient (electrical physics) - Relates a magnetic field applied to an element to the voltage created, the amount of current and the element thickness. It is a characteristic of the material from which the conductor is made.
  4. Lift coefficient (CL or CZ) (aerodynamics) (dimensionless) - Relates the lift generated by an airfoil with the dynamic pressure of the fluid flow around the airfoil, and the planform area of the airfoil.
  5. Ballistic coefficient (BC) (aerodynamics) (units of kg/m2) - A measure of a body's ability to overcome air resistance in flight. BC is a function of mass, diameter, and drag coefficient.
  6. Transmission coefficient (quantum mechanics) (dimensionless) - Represents the probability flux of a transmitted wave relative to that of an incident wave. It is often used to describe the probability of a particle tunnelling through a barrier.
  7. Damping factor a.k.a. viscous damping coefficient (Physical Engineering) (units of newton-seconds per meter) - relates a damping force with the velocity of the object whose motion is being dampened.


Related Research Articles

<span class="mw-page-title-main">Atomic theory</span> Model for understanding elemental particles

Atomic theory is the scientific theory that matter is composed of particles called atoms. The concept that matter is composed of discrete particles is an ancient idea, but gained scientific credence in the 18th and 19th centuries when scientists found it could explain the behaviors of gases and how chemical elements reacted with each other. By the end of the 19th century, atomic theory had gained widespread acceptance in the scientific community.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

<span class="mw-page-title-main">Lift (force)</span> Force perpendicular to flow of surrounding fluid

A fluid flowing around an object exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direction. Lift conventionally acts in an upward direction in order to counter the force of gravity, but it is defined to act perpendicular to the flow and therefore can act in any direction.

<span class="mw-page-title-main">Stoichiometry</span> Calculation of relative quantities of reactants and products in chemical reactions

Stoichiometry is the relationship between the quantities of reactants and products before, during, and following chemical reactions.

The mole (symbol mol) is the unit of measurement for amount of substance, a quantity proportional to the number of elementary entities of a substance. It is a base unit in the International System of Units (SI). One mole contains exactly 6.02214076×1023 elementary entities (602 sextillion or 602 billion times a trillion), which can be atoms, molecules, ions, or other particles. The number of particles in a mole is the Avogadro number (symbol N0) and the numerical value of the Avogadro constant (symbol NA) expressed in mol-1. The value was chosen based on the historical definition of the mole as the amount of substance that corresponds to the number of atoms in 12 grams of 12C, which made the mass of a mole of a compound expressed in grams numerically equal to the average molecular mass of the compound expressed in daltons. With the 2019 redefinition of the SI base units, the numerical equivalence is now only approximate but may be assumed for all practical purposes.

<span class="mw-page-title-main">Formula</span> Concise way of expressing information symbolically

In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a chemical formula. The informal use of the term formula in science refers to the general construct of a relationship between given quantities.

<span class="mw-page-title-main">Drag coefficient</span> Dimensionless parameter to quantify fluid resistance

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.

A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas. The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. The chemical formulas may be symbolic, structural, or intermixed. The coefficients next to the symbols and formulas of entities are the absolute values of the stoichiometric numbers. The first chemical equation was diagrammed by Jean Beguin in 1615.

A period 2 element is one of the chemical elements in the second row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.

In fluid dynamics, the lift coefficient is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. CL is a function of the angle of the body to the flow, its Reynolds number and its Mach number. The section lift coefficient cl refers to the dynamic lift characteristics of a two-dimensional foil section, with the reference area replaced by the foil chord.

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.

<span class="mw-page-title-main">Chemical substance</span> Matter of constant chemical composition and properties

A chemical substance is a form of matter having constant chemical composition and characteristic properties. Chemical substances can be simple substances, chemical compounds, or alloys.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Oxygen compounds</span>

The oxidation state of oxygen is −2 in almost all known compounds of oxygen. The oxidation state −1 is found in a few compounds such as peroxides. Compounds containing oxygen in other oxidation states are very uncommon: −12 (superoxides), −13 (ozonides), 0, +12 (dioxygenyl), +1, and +2.

<span class="mw-page-title-main">Wind-turbine aerodynamics</span> Physical property

The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

This glossary of physics is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusive glossaries concerning related fields of science and technology, see Glossary of chemistry terms, Glossary of astronomy, Glossary of areas of mathematics, and Glossary of engineering.

This glossary of civil engineering terms is a list of definitions of terms and concepts pertaining specifically to civil engineering, its sub-disciplines, and related fields. For a more general overview of concepts within engineering as a whole, see Glossary of engineering.

This glossary of engineering terms is a list of definitions about the major concepts of engineering. Please see the bottom of the page for glossaries of specific fields of engineering.