PipeRench

Last updated

The PipeRench Reconfigurable Computing Project is a project from the Carnegie Mellon University intended to improve reconfigurable computing systems. It aims to allow hardware virtualization through high-speed reconfiguration, in order to minimize resource constraints in FPGAs and similar systems.

The project has already succeeded in manufacturing a chip and testing it. PipeRench has been licensed by a start-up—Rapport and is the basis of their Kilocore chip.

Related Research Articles

Processor design is a subfield of computer science and computer engineering (fabrication) that deals with creating a processor, a key component of computer hardware.

<span class="mw-page-title-main">Information Sciences Institute</span> University of Southern California research institute

The USC Information Sciences Institute (ISI) is a component of the University of Southern California (USC) Viterbi School of Engineering, and specializes in research and development in information processing, computing, and communications technologies. It is located in Marina del Rey, California.

Reconfigurable computing is a computer architecture combining some of the flexibility of software with the high performance of hardware by processing with very flexible high speed computing fabrics like field-programmable gate arrays (FPGAs). The principal difference when compared to using ordinary microprocessors is the ability to make substantial changes to the datapath itself in addition to the control flow. On the other hand, the main difference from custom hardware, i.e. application-specific integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by "loading" a new circuit on the reconfigurable fabric.

<span class="mw-page-title-main">Steve Furber</span> British computer scientist

Stephen Byram Furber is a British computer scientist, mathematician and hardware engineer, currently the ICL Professor of Computer Engineering in the Department of Computer Science at the University of Manchester, UK. After completing his education at the University of Cambridge, he spent the 1980s at Acorn Computers, where he was a principal designer of the BBC Micro and the ARM 32-bit RISC microprocessor. As of 2018, over 100 billion copies of the ARM processor have been manufactured, powering much of the world's mobile computing and embedded systems.

A soft microprocessor is a microprocessor core that can be wholly implemented using logic synthesis. It can be implemented via different semiconductor devices containing programmable logic, including both high-end and commodity variations.

Computational RAM (C-RAM) is random-access memory with processing elements integrated on the same chip. This enables C-RAM to be used as a SIMD computer. It also can be used to more efficiently use memory bandwidth within a memory chip. The general technique of doing computations in memory is called Processing-In-Memory (PIM).

<span class="mw-page-title-main">Nick Tredennick</span> American inventor (1946–2022)

Harry L. "Nick" Tredennick was an American manager, inventor, VLSI design engineer and author who was involved in the development for Motorola's MC68000 and for IBM's Micro/370 microprocessors. He held BSEE and MSEE degrees from Texas Tech University, and a Ph.D. in Electrical Engineering from the University of Texas at Austin. Tredennick was named a Fellow of the IEEE; the citation reads "For the design and implementation of the execution unit and controller of the MC68000 workstation microprocessor".

In computing, an eFuse is a microscopic fuse put into a computer chip. This technology was invented by IBM in 2004 to allow for the dynamic real-time reprogramming of chips. In the abstract, computer logic is generally "etched" or "hard-wired" onto a chip and cannot be changed after the chip has finished being manufactured. By utilizing a set of eFuses, a chip manufacturer can allow for the circuits on a chip to change while it is in operation.

This is a glossary of terms used in the field of Reconfigurable computing and reconfigurable computing systems, as opposed to the traditional Von Neumann architecture.

The Advanced Learning and Research Institute (ALaRI), a faculty of informatics, was established in 1999 at the University of Lugano to promote research and education in embedded systems. The Faculty of Informatics within very few years has become one of the Switzerland major destinations for teaching and research, ranking third after the two Federal Institutes of Technology, Zurich and Lausanne.

Ambric, Inc. was a designer of computer processors that developed the Ambric architecture. Its Am2045 Massively Parallel Processor Array (MPPA) chips were primarily used in high-performance embedded systems such as medical imaging, video, and signal-processing.

Manycore processors are special kinds of multi-core processors designed for a high degree of parallel processing, containing numerous simpler, independent processor cores. Manycore processors are used extensively in embedded computers and high-performance computing.

Computing with Memory refers to computing platforms where function response is stored in memory array, either one or two-dimensional, in the form of lookup tables (LUTs) and functions are evaluated by retrieving the values from the LUTs. These computing platforms can follow either a purely spatial computing model, as in field-programmable gate array (FPGA), or a temporal computing model, where a function is evaluated across multiple clock cycles. The latter approach aims at reducing the overhead of programmable interconnect in FPGA by folding interconnect resources inside a computing element. It uses dense two-dimensional memory arrays to store large multiple-input multiple-output LUTs. Computing with Memory differs from Computing in Memory or processor-in-memory (PIM) concepts, widely investigated in the context of integrating a processor and memory on the same chip to reduce memory latency and increase bandwidth. These architectures seek to reduce the distance the data travels between the processor and the memory. The Berkeley IRAM project is one notable contribution in the area of PIM architectures.

Massively parallel is the term for using a large number of computer processors to simultaneously perform a set of coordinated computations in parallel. GPUs are massively parallel architecture with tens of thousands of threads.

A soft core is a digital circuit that can be wholly implemented using logic synthesis. It can be implemented via different semiconductor devices containing programmable logic, including both high-end and commodity variations. Many soft cores may be implemented in one FPGA. In those multi-core systems, rarely used resources can be shared between all the cores.

Achronix Semiconductor Corporation is an American fabless semiconductor company based in Santa Clara, California with an additional R&D facility in Bangalore, India, and an additional sales office in Shenzhen, China. Achronix is a diversified fabless semiconductor company that sells FPGA products, embedded FPGA (eFPGA) products, system-level products and supporting design tools. Achronix was founded in 2004 in Ithaca, New York based on technology licensed from Cornell University. In 2006, Achronix moved its headquarters to Silicon Valley.

Heterogeneous computing refers to systems that use more than one kind of processor or core. These systems gain performance or energy efficiency not just by adding the same type of processors, but by adding dissimilar coprocessors, usually incorporating specialized processing capabilities to handle particular tasks.

The Xputer is a design for a reconfigurable computer, proposed by computer scientist Reiner Hartenstein. Hartenstein uses various terms to describe the various innovations in the design, including config-ware, flow-ware, morph-ware, and "anti-machine".

A vision processing unit (VPU) is an emerging class of microprocessor; it is a specific type of AI accelerator, designed to accelerate machine vision tasks.

<span class="mw-page-title-main">Nader Bagherzadeh</span>

Nader Bagherzadeh is a professor of computer engineering in the Department of Electrical Engineering and Computer Science at the University of California, Irvine, where he served as a chair from 1998 to 2003. Bagherzadeh has been involved in research and development in the areas of: Computer Architecture, Reconfigurable Computing, VLSI Chip Design, Network-on-Chip, 3D chips, Sensor Networks, Computer Graphics, Memory and Embedded Systems. Bagherzadeh was named Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2014 for contributions to the design and analysis of coarse-grained reconfigurable processor architectures. Bagherzadeh has published more than 400 articles in peer-reviewed journals and conferences. He was with AT&T Bell Labs from 1980 to 1984.