Piston effect

Last updated

Piston effect refers to the forced-air flow inside a tunnel or shaft caused by moving vehicles. [1] It is one of numerous phenomena that engineers and designers must consider when developing a range of structures.

Contents

Cause

A diagram showing the piston effect as a vehicle moves through a tunnel. Piston Effect of a Van.svg
A diagram showing the piston effect as a vehicle moves through a tunnel.
The elongated nose of the E5 Series Shinkansen in Japan is designed to counter the piston effect. E5 S11 Sendai 20090725.JPG
The elongated nose of the E5 Series Shinkansen in Japan is designed to counter the piston effect.

In open air, when a vehicle travels along, air pushed aside can move in any direction except into the ground. Inside a tunnel, air is confined by the tunnel walls to move along the tunnel. Behind the moving vehicle, as air has been pushed away, suction is created, and air is pulled to flow into the tunnel. In addition, because of fluid viscosity, the surface of the vehicle drags the air to flow with vehicle, a force experienced as skin drag by the vehicle. This movement of air by the vehicle is analogous to the operation of a mechanical piston as inside a reciprocating compressor gas pump, hence the name "piston effect". The effect is also similar to the pressure fluctuations inside drainage pipes as waste water pushes air in front of it.

The clearance between train and tunnel is often small. London Underground train exiting a tunnel. Why London Underground is nicknamed The Tube.jpg
The clearance between train and tunnel is often small. London Underground train exiting a tunnel.

The piston effect is very pronounced in railway tunnels, because the cross sectional area of trains is large and in many cases almost completely fills the tunnel cross section. The wind felt by the passengers on underground railway platforms (that do not have platform screen doors installed) when a train is approaching is air flow from the piston effect. The effect is less pronounced in road vehicle tunnels, as the cross-sectional area of vehicle is small compared to the total cross-sectional area of the tunnel. Single track tunnels experience the maximum effect but clearance between rolling stock and the tunnel as well as the shape of the front of the train affect its strength. [3]

Air flow caused by the piston effect can exert large forces on the installations inside the tunnel and so these installations have to be carefully designed and installed properly. Non-return dampers are sometimes needed to prevent stalling of ventilation fans caused by this air flow. [3]

Applications

The piston effect has to be considered by building designers in relation to smoke movement within an elevator shaft. [4] A moving elevator car forces the air in front of it out of the shaft and pulls air into the shaft behind it with the effect most apparent in elevator systems with a fast moving car in a single shaft. This means that in a fire a moving elevator may push smoke into lower floors. [4]

The piston effect is used in tunnel ventilation. In railway tunnels, the train pushes out the air in front of it toward the closest ventilation shaft in front, and sucks air into the tunnel from the closest ventilation shaft behind it. The piston effect can also assist ventilation in road vehicle tunnels.

In underground rapid transit systems, the piston effect contributes to ventilation and in some cases provides enough air movement to make mechanical ventilation unnecessary. At wider stations with multiple tracks, air quality remains the same and can even improve when mechanical ventilation is disabled. At narrow platforms with a single tunnel, however, air quality worsens when relying on the piston effect alone for ventilation. This still allows for potential energy savings by taking advantage of the piston effect rather than mechanical ventilation where possible. [5]

Tunnel boom

A tunnel in the French high-speed TGV network with an entrance hood to mitigate tunnel boom. Tgv tunnel with hood.jpg
A tunnel in the French high-speed TGV network with an entrance hood to mitigate tunnel boom.

Tunnel boom is a loud boom sometimes generated by high-speed trains when they exit tunnels. These shock waves can disturb nearby residents and damage trains and nearby structures. People perceive this sound similarly to that of a sonic boom from supersonic aircraft. However, unlike a sonic boom, tunnel boom is not caused by trains exceeding the speed of sound. Instead, tunnel boom results from the structure of the tunnel preventing the air around the train from escaping in all directions. As a train passes through a tunnel, it creates compression waves in front of it. These waves coalesce into a shock wave that generates a loud boom when it reaches the tunnel exit. [6] [7] The strength of this wave is proportional to the cube of the train's speed, so the effect is much more pronounced with faster trains. [7]

Tunnel boom can disturb residents near the mouths of tunnels, and it is exacerbated in mountain valleys where the sound echoes. Reducing these disturbances is a significant challenge for high-speed lines such as Japan's Shinkansen, France's TGV and Spain's AVE. Tunnel boom has become a principal limitation to increased train speeds in Japan where the mountainous terrain requires frequent tunnels. Japan has enacted a law limiting noise to 70 dB in residential areas, [8] which include many tunnel exit zones.

Methods of reducing tunnel boom include making the train's profile highly aerodynamic, adding hoods to tunnel entrances, [9] installing perforated walls at tunnel exits, [6] and drilling vent holes in the tunnel [7] (similar to fitting a silencer on a firearm, but on a far bigger scale).

Ear discomfort

Passengers and crew may experience ear discomfort as a train enters a tunnel because of rapid pressure changes. [10]

See also

Footnotes

  1. "JR-East (East Japan Railway Company)". Archived from the original on February 17, 2012.
  2. Hitachi Brasil Ltd. (16 August 2011). "Innovation and Advanced Technology - High Speed Train – Hitachi Brasil Ltda". www.slideshare.net. Slide 7.
  3. 1 2 Bonnett, Clifford F. (2005). Practical Railway Engineering. Imperial College Press. pp. 174–175. ISBN   978-1860945151 . Retrieved 20 January 2016.
  4. 1 2 Klote, John H.; George Tamura (13 June 1986). "Elevator Piston Effect and the Smoke Problem" (PDF). Fire Safety Journal. 11 (2): 227–233. doi:10.1016/0379-7112(86)90065-2. S2CID   109519137 . Retrieved 20 January 2016.
  5. Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M.C.; Amato, F.; Alastuey, A.; Querol, X.; Gibbons, W. (2014-04-24). "Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design". Atmospheric Environment. 92 (August 2014): 461–468. Bibcode:2014AtmEn..92..461M. doi: 10.1016/j.atmosenv.2014.04.043 .
  6. 1 2 Takayama, K.; Sasoh, A.; Onodera, O.; Kaneko, R.; Matsui, Y. (1995-10-01). "Experimental investigation on tunnel sonic boom". Shock Waves. 5 (3): 127–138. Bibcode:1995ShWav...5..127T. doi:10.1007/BF01435520. S2CID   122885346.
  7. 1 2 3 Auvity, B.; Bellenoue, M.; Kageyama, T. (February 2001). "Experimental study of the unsteady aerodynamic field outside a tunnel during a train entry". Experiments in Fluids. 30 (2): 221–228. Bibcode:2001ExFl...30..221A. doi:10.1007/s003480000159. S2CID   120337373.
  8. "新幹線鉄道騒音に係る環境基準について(昭和50年環境庁告示) The Environmental Regulation of Shinkansen Noise Pollutions (1975, Environmental Agency) (Japanese)". Env.go.jp. Retrieved 1 October 2012.
  9. Ishikawa, Satoshi; Nakade, Kazuhiro; Yaginuma, Ken-ichi; Watanabe, Yasuo; Masuda, Toru (2010). "Development of New Tunnel Entrance Hoods". JR East Technical Review. 16 (Spring): 56–59. Retrieved 2016-01-04.
  10. Xie, Pengpeng; Peng, Yong; Wang, Tiantian; Zhang, Honghao (April 2019). "Risks of Ear Complaints of Passengers and Drivers While Trains Are Passing Through Tunnels at High Speed: A Numerical Simulation and Experimental Study". International Journal of Environmental Research and Public Health. 16 (7): 1283. doi: 10.3390/ijerph16071283 . ISSN   1661-7827. PMC   6480231 . PMID   30974822.

Related Research Articles

<span class="mw-page-title-main">Anemometer</span> Instrument for measuring wind speed

In meteorology, an anemometer is a device that measures wind speed and direction. It is a common instrument used in weather stations. The earliest known description of an anemometer was by Italian architect and author Leon Battista Alberti (1404–1472) in 1450.

<span class="mw-page-title-main">Area rule</span> Aerodynamic concept

The Whitcomb area rule, named after NACA engineer Richard Whitcomb and also called the transonic area rule, is a design procedure used to reduce an aircraft's drag at transonic speeds which occur between about Mach 0.75 and 1.2. For supersonic speeds a different procedure called the supersonic area rule, developed by NACA aerodynamicist Robert Jones, is used.

<span class="mw-page-title-main">Brake</span> Mechanical device that inhibits motion

A brake is a mechanical device that inhibits motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by means of friction.

<span class="mw-page-title-main">Shock wave</span> Propagating disturbance

In physics, a shock wave, or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

<span class="mw-page-title-main">Tunnel</span> Underground passage made for traffic

A tunnel is an underground or undersea passageway. It is dug through surrounding soil, earth or rock, or laid under water, and is enclosed except for the entrance and exit, commonly at each end. A pipeline is not a tunnel, though some recent tunnels have used immersed tube construction techniques rather than traditional tunnel boring methods.

<span class="mw-page-title-main">Rotherhithe Tunnel</span> Road tunnel under the Thames river

The Rotherhithe Tunnel, designated the A101, is a road tunnel under the River Thames in East London, connecting Limehouse in the London Borough of Tower Hamlets north of the river to Rotherhithe in the London Borough of Southwark south of the river. It was formally opened in 1908 by George, Prince of Wales, and Richard Robinson, Chairman of the London County Council. It is a rare example of a road tunnel where road traffic, pedestrians and cyclists all share the same tunnel bore. Transport for London took over ownership and maintenance of the tunnel in 2001.

<span class="mw-page-title-main">Yamagata Shinkansen</span> High-speed railway line in Japan

The Yamagata Shinkansen (山形新幹線) is a Mini-shinkansen route in Japan, operated by East Japan Railway Company. It provides service between Tokyo and Shinjō in Yamagata Prefecture over the tracks of the Tohoku Shinkansen and the Ōu Main Line.

<span class="mw-page-title-main">Elevator (aeronautics)</span> Aircraft control surface used to control pitch

Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer. They may be the only pitch control surface present, and are sometimes located at the front of the aircraft or integrated into a rear "all-moving tailplane", also called a slab elevator or stabilator.

<span class="mw-page-title-main">Traction motor</span> An electric motor for vehicle propulsion

A traction motor is an electric motor used for propulsion of a vehicle, such as locomotives, electric or hydrogen vehicles, or electric multiple unit trains.

<span class="mw-page-title-main">Inlet manifold</span> Automotive technology

In automotive engineering, an inlet manifold or intake manifold is the part of an engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.

Torsional vibration is the angular vibration of an object - commonly a shaft - along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings, where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.

Cylinder head porting refers to the process of modifying the intake and exhaust ports of an internal combustion engine to improve their air flow. Cylinder heads, as manufactured, are usually suboptimal for racing applications due to being designed for maximum durability. Ports can be modified for maximum power, minimum fuel consumption, or a combination of the two, and the power delivery characteristics can be changed to suit a particular application.

Gas kinetics is a science in the branch of fluid dynamics, concerned with the study of motion of gases and its effects on physical systems. Based on the principles of fluid mechanics and thermodynamics, gas dynamics arises from the studies of gas flows in transonic and supersonic flights. To distinguish itself from other sciences in fluid dynamics, the studies in gas dynamics are often defined with gases flowing around or within physical objects at speeds comparable to or exceeding the speed of sound and causing a significant change in temperature and pressure. Some examples of these studies include but are not limited to: choked flows in nozzles and valves, shock waves around jets, aerodynamic heating on atmospheric reentry vehicles and flows of gas fuel within a jet engine. At the molecular level, gas dynamics is a study of the kinetic theory of gases, often leading to the study of gas diffusion, statistical mechanics, chemical thermodynamics and non-equilibrium thermodynamics. Gas dynamics is synonymous with aerodynamics when the gas field is air and the subject of study is flight. It is highly relevant in the design of aircraft and spacecraft and their respective propulsion systems.

The stack effect or chimney effect is the movement of air into and out of buildings through unsealed openings, chimneys, flue-gas stacks, or other containers, resulting from air buoyancy. Buoyancy occurs due to a difference in indoor-to-outdoor air density resulting from temperature and moisture differences. The result is either a positive or negative buoyancy force. The greater the thermal difference and the height of the structure, the greater the buoyancy force, and thus the stack effect. The stack effect helps drive natural ventilation, air infiltration, and fires.

<span class="mw-page-title-main">Fan (machine)</span> Machine used to produce air flow

A fan is a powered machine used to create a flow of air. A fan consists of a rotating arrangement of vanes or blades, generally made of wood, plastic, or metal, which act on the air. The rotating assembly of blades and hub is known as an impeller, rotor, or runner. Usually, it is contained within some form of housing, or case. This may direct the airflow, or increase safety by preventing objects from contacting the fan blades. Most fans are powered by electric motors, but other sources of power may be used, including hydraulic motors, handcranks, and internal combustion engines.

<span class="mw-page-title-main">Elevator</span> Vertical transport device

An elevator or lift is a machine that vertically transports people or freight between levels. They are typically powered by electric motors that drive traction cables and counterweight systems such as a hoist, although some pump hydraulic fluid to raise a cylindrical piston like a jack.

<span class="mw-page-title-main">300X</span> Japanese experimental high speed train type

"300X" was the name given to the Class 955 (955形) 6-car experimental Shinkansen train developed in 1994 by the Central Japan Railway Company in Japan to test technology to be incorporated in future shinkansen trains operating at speeds of 300 km/h (186 mph) or higher.

<span class="mw-page-title-main">Cross ventilation</span> Movement of air through a building

Cross ventilation is a natural phenomenon where wind, fresh air or a breeze enters upon an opening, such as a window, and flows directly through the space and exits through an opening on the opposite side of the building. This produces a cool stream of air and as well as a current across the room from the exposed area to the sheltered area. Other terms used for the effect include, cross-breeze, cross-draft, wind effect ventilation and cross-flow ventilation.

<span class="mw-page-title-main">ALFA-X</span> Experimental Japanese high-speed shinkansen trainset

The Class E956 (E956形), branded "ALFA-X", is a ten-car experimental Shinkansen train operated by East Japan Railway Company in Japan to test technology to be incorporated into future trains operating at speeds of up to 360 km/h (225 mph). The name is an acronym for "Advanced Labs for Frontline Activity in rail eXperimentation". The first train was unveiled on May 9, 2019. Its test run is mainly performed in sections between Sendai and Shin-Aomori of the Tohoku Shinkansen line, and, in some cases, on the Hokkaido Shinkansen line.

The Chiltern Tunnel is a high-speed railway tunnel currently under construction in Buckinghamshire and Hertfordshire, England, and will upon completion carry the High Speed 2 (HS2) railway line under the Chiltern Hills. The twin-bore tunnels, which are 16.04 km long, will be the longest on the HS2 line. Each tunnel will also have additional 220 m (720 ft) entry and 135 m (443 ft) exit perforated concrete portals to reduce sudden changes in air pressure and subsequent noise.

References