Placental alpha microglobulin-1 (PAMG-1)

Last updated

Placental alpha microglobulin-1 (PAMG-1) is a human protein that was first isolated in 1975 from amniotic fluid. PAMG-1 is an important biomarker for the detection of premature rupture of fetal membrane (PROM) The high concentration of PAMG-1 in amniotic fluid means it can be used to detect if this fluid is present in the cervico-vaginal discharge of pregnant women; the presence of PAMG-1 in the discharge suggests that amniotic fluid is present, and therefore suggests that PROM has occurred. PAMG-1 was originally referred to as specific alpha-1 globulin of placenta. [1]

Contents

PAMG-1 is present in blood and the amniotic fluid and cervico-vaginal discharge of pregnant women. The concentration of PAMG-1 in the amniotic fluid of pregnant women (2,000–25,000 ng/ml), however, is several thousand magnitudes higher than that found in their background cervico-vaginal discharge when the fetal membranes are intact (0.05–0.2 ng/ml). It has been found to be present in amniotic fluid in significantly high concentrations throughout all three trimesters of pregnancy.

Diagnostic potential

Because of its contrasting concentrations in the amniotic fluid and background cervico-vaginal discharge of pregnant women, PAMG-1 proves to be an excellent protein marker for amniotic fluid. Detecting amniotic fluid via PAMG-1 becomes particularly important when determining whether or not fetal membranes are ruptured. Premature rupture of fetal membranes (or PROM as it is more commonly referred) occurs in roughly 10% of pregnancies [2] and is one of the most common diagnoses associated with premature delivery and neonatal complications that requires admission to the NICU. [3] Risks of neonatal complications as a result of PROM can include infection, [4] preterm delivery, [5] fetal distress, prolapsed cord, and abruptio placenta. [6]

Placental alpha macroglobulin-1 (PAMG-1) has been the subject of over 20 clinical investigations, the majority of which have focused on the antigen’s ability to detect premature rupture of the fetal membranes (ROM) in non-laboring pregnant women presenting with unexplainable vaginal leakage. A small sub-segment of these investigations, however, have evaluated the ability of PAMG-1 to assess the risk of preterm delivery in pregnant patients presenting with signs or symptoms of preterm labor. [7] [8] [9] [10] [11] [12] The results of these studies suggested that a test for PAMG-1 that is more sensitive than the one investigated initially may prove to be a very powerful predictor of imminent spontaneous preterm delivery in patients with threatened preterm labor. Such a device was soon developed (commercially known as the PartoSure test) and was initially evaluated in a multicenter, multinational pilot study, that included 101 consecutively recruited pregnant women with singleton pregnancies who presented with symptoms of preterm labor, clinically intact amniotic membranes, and minimal cervical dilatation. In this group, the PartoSure test provided a 97.4% and 93.6% negative predictive value, and 78.3% and 87.0% positive predictive value for the prediction of imminent spontaneous delivery within ≤7 and ≤14 days, respectively, and 90.0% and 80.0% sensitivity and 93.8% and 96.1% specificity for ≤7 and ≤14 days, respectively. [13]

A second peer-reviewed, published study by this same group of authors involved 203 patients and sought to compare the PartoSure test to standard methods for assessing the risk of preterm delivery in patients with preterm labor. [14] The authors concluded that PAMG-1 detection by PartoSure is the single best predictor of imminent spontaneous delivery within 7 days compared to cervical length measurement via transvaginal ultrasound with a cutoff of 25mm (CL), and fetal fibronectin testing (fFN) via a commercially available, rapid test. Furthermore, the authors suggested that the statistical superiority of PartoSure to fFN and CL with respect to SP and PPV (P < 0.01) provided evidence that PartoSure may serve to significantly enhance current practice and ultimately reduce unnecessary hospital admissions. The Spanish Society of Obstetricians and Gynecologists (SEGO) recently reported in its 2014 Preterm Labor Guidelines that, “[a]lthough the PPV and the sensitivity of PAMG-1 are the highest, the main utility of this test [PartoSure], as is the measurement of cervical length, is its high negative predictive value; its prognostic capacity increases in populations with high prevalence of prematurity. For this reason it [PAMG-1] has been used in women with a shortened cervix and may be useful for clinical decision making and the use of tocolytics, the use of corticosteroids or monitoring of these patients.” [15]

Diagnostic applications

The diagnostic capability of the PAMG-1 protein has originally been used by an immunoassay that employs a series of monoclonal antibodies (MABs) to the PAMG-1 protein. This immunoassay detects the presence of PAMG-1 in the cervico-vaginal discharge of pregnant woman and has been shown to detect rupture of membranes with approximately 99% accuracy. [16] In 2014, an unprecedented study involving 140 patients was published that compared this device to a seldom-used, invasive gold standard for diagnosing rupture of membranes called the indigo carmine test. The results of this study showed a 99% correlation between the two tests and led the investigators to propose the use of the noninvasive PAMG-1 test in situations where the use of the invasive dye test is not practical. [17]

Additionally, and in light of early research suggesting a diagnostic application of PAMG-1 detection as a test to assess the risk of imminent spontaneous preterm birth, a commercial test known as the PartoSure test was developed and has been the subject of several peer-reviewed publications suggesting its superiority to conventional methods for assessing the risk of preterm birth (i.e. fetal fibronectin testing and cervical length measurement via transvaginal ultrasound). [14] Di Renzo et al. report, "That the PartoSure test was found to be statistically superior to fFN fetal fibronectin and CL [cervical length measurement via transvaginal ultrasound] with respect to SP specificity and PPV positive predictive value (P < 0.01) provides evidence toward being able to significantly enhance current practice to ultimately reduce the unnecessary administration of potentially harmful therapeutics to patients, as well as reduce the economic burden associated with unnecessary hospital admissions." In this study, the sensitivities for PartoSure (PAMG-1, n=203), fetal fibronectin (fFN, n=66), and cervical length measurement via transvaginal ultrasound (CL, n=203) for predicting imminent spontaneous preterm birth within 7 days were 80%, 50%, and 57%, respectively. The specificities were 95%, 72%, and 73% for PAMG-1, fFN and CL, respectively. The NPVs were 96%, 87%, and 89% for PAMG-1, fFN and CL, respectively. The PPVs were 76%, 29%, and 30% for PAMG-1, fFN and CL, respectively.

Additional resources

Related Research Articles

<span class="mw-page-title-main">Amniocentesis</span> Sampling of amniotic fluid done mainly to detect fetal chromosomal abnormalities

Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation.

<span class="mw-page-title-main">Preterm birth</span> Birth at less than a specified gestational age

Preterm birth, also known as premature birth, is the birth of a baby at fewer than 37 weeks gestational age, as opposed to full-term delivery at approximately 40 weeks. Extreme preterm is less than 28 weeks, very early preterm birth is between 28 and 32 weeks, early preterm birth occurs between 32 and 34 weeks, late preterm birth is between 34 and 36 weeks' gestation. These babies are also known as premature babies or colloquially preemies or premmies. Symptoms of preterm labor include uterine contractions which occur more often than every ten minutes and/or the leaking of fluid from the vagina before 37 weeks. Premature infants are at greater risk for cerebral palsy, delays in development, hearing problems and problems with their vision. The earlier a baby is born, the greater these risks will be.

<span class="mw-page-title-main">Chorionic villus sampling</span> Type of prenatal diagnosis done to determine chromosomal or genetic disorders in the fetus

Chorionic villus sampling (CVS), sometimes called "chorionic villous sampling", is a form of prenatal diagnosis done to determine chromosomal or genetic disorders in the fetus. It entails sampling of the chorionic villus and testing it for chromosomal abnormalities, usually with FISH or PCR. CVS usually takes place at 10–12 weeks' gestation, earlier than amniocentesis or percutaneous umbilical cord blood sampling. It is the preferred technique before 15 weeks.

Oligohydramnios is a medical condition in pregnancy characterized by a deficiency of amniotic fluid, the fluid that surrounds the fetus in the abdomen, in the amniotic sac. It is typically diagnosed by ultrasound when the amniotic fluid index (AFI) measures less than 5 cm or when the single deepest pocket (SDP) of amniotic fluid measures less than 2 cm. Amniotic fluid is necessary to allow for normal fetal movement, lung development, and cushioning from uterine compression. Low amniotic fluid can be attributed to a maternal, fetal, placental or idiopathic cause and can result in poor fetal outcomes including death. The prognosis of the fetus is dependent on the etiology, gestational age at diagnosis, and the severity of the oligohydramnios.

<span class="mw-page-title-main">Amniotic fluid</span> Fluid surrounding a fetus within the amnion

The amniotic fluid is the protective liquid contained by the amniotic sac of a gravid amniote. This fluid serves as a cushion for the growing fetus, but also serves to facilitate the exchange of nutrients, water, and biochemical products between mother and fetus.

<span class="mw-page-title-main">Umbilical cord prolapse</span> Complication of pregnancy where the umbilical cord slips out of the uterus prior to birth

Umbilical cord prolapse is when the umbilical cord comes out of the uterus with or before the presenting part of the baby. The concern with cord prolapse is that pressure on the cord from the baby will compromise blood flow to the baby. It usually occurs during labor but can occur anytime after the rupture of membranes.

Labor induction is the process or treatment that stimulates childbirth and delivery. Inducing (starting) labor can be accomplished with pharmaceutical or non-pharmaceutical methods. In Western countries, it is estimated that one-quarter of pregnant women have their labor medically induced with drug treatment. Inductions are most often performed either with prostaglandin drug treatment alone, or with a combination of prostaglandin and intravenous oxytocin treatment.

Rupture of membranes (ROM) or amniorrhexis is a term used during pregnancy to describe a rupture of the amniotic sac. Normally, it occurs spontaneously at full term either during or at the beginning of labor. Rupture of the membranes is known colloquially as "breaking [one's] water," especially when induced rather than spontaneous, or as one's "water breaking". A premature rupture of membranes (PROM) is a rupture of the amnion that occurs at full term and prior to the onset of labor. In cases of PROM, options include expectant management without intervention, or interventions such as oxytocin or other methods of labor induction, and both are usually accompanied by close monitoring of maternal and fetal health. Preterm premature rupture of membranes (PPROM) is when water breaks both before the onset of labor and before the pregnancy's 37 week gestation. In the United States, more than 120,000 pregnancies per year are affected by a premature rupture of membranes, which is the cause of about one third of preterm deliveries.

Bloody show or show is the passage of a small amount of blood or blood-tinged mucus through the vagina near the end of pregnancy. It is caused by thinning and dilation of the cervix, leading to detachment of the cervical mucus plug that seals the cervix during pregnancy and tearing of small cervical blood vessels, and is one of the signs that labor may be imminent. The bloody show may be expelled from the vagina in pieces or altogether and often appears as a jelly-like piece of mucus stained with blood. Although the bloody show may be alarming at first, it is not a concern of patient health after 37 weeks gestation.

Fetal fibronectin (fFN) is a fibronectin protein produced by fetal cells. It is found at the interface of the chorion and the decidua. Fetal fibronectin is found normally in vaginal fluid in early pregnancy prior to 22 weeks due to normal growth and development of tissues at the junction of the uterus and amniotic sac. It may also be found in vaginal fluid after 36 weeks as labor approaches. However, fFN should not be detected between 22 and 36 weeks.

<span class="mw-page-title-main">Prelabor rupture of membranes</span> Medical condition

Prelabor rupture of membranes (PROM), previously known as premature rupture of membranes, is breakage of the amniotic sac before the onset of labor. Women usually experience a painless gush or a steady leakage of fluid from the vagina. Complications in the baby may include premature birth, cord compression, and infection. Complications in the mother may include placental abruption and postpartum endometritis.

<span class="mw-page-title-main">Cervical effacement</span>

Cervical effacement or cervical ripening refers to the thinning and shortening of the cervix. This process occurs during labor to prepare the cervix for dilation to allow the fetus to pass through the vagina. While this a normal, physiological process that occurs at the later end of pregnancy, it can also be induced through medications and procedures.

<span class="mw-page-title-main">Chorioamnionitis</span> Medical condition

Chorioamnionitis, also known as intra-amniotic infection (IAI), is inflammation of the fetal membranes, usually due to bacterial infection. In 2015, a National Institute of Child Health and Human Development Workshop expert panel recommended use of the term "triple I" to address the heterogeneity of this disorder. The term triple I refers to intrauterine infection or inflammation or both and is defined by strict diagnostic criteria, but this terminology has not been commonly adopted although the criteria are used.

<span class="mw-page-title-main">Vasa praevia</span> Condition in which fetal blood vessels cross or run near the internal opening of the uterus

Vasa praevia is a condition in which fetal blood vessels cross or run near the internal opening of the uterus. These vessels are at risk of rupture when the supporting membranes rupture, as they are unsupported by the umbilical cord or placental tissue.

Amniotic fluid index (AFI) is a quantitative estimate of amniotic fluid and an indicator of fetal well-being. It is a separate measurement from the biophysical profile.

<span class="mw-page-title-main">Velamentous cord insertion</span> Velamentous placenta

Velamentous cord insertion is a complication of pregnancy where the umbilical cord is inserted in the fetal membranes. It is a major cause of antepartum hemorrhage that leads to loss of fetal blood and associated with high perinatal mortality. In normal pregnancies, the umbilical cord inserts into the middle of the placental mass and is completely encased by the amniotic sac. The vessels are hence normally protected by Wharton's jelly, which prevents rupture during pregnancy and labor. In velamentous cord insertion, the vessels of the umbilical cord are improperly inserted in the chorioamniotic membrane, and hence the vessels traverse between the amnion and the chorion towards the placenta. Without Wharton's jelly protecting the vessels, the exposed vessels are susceptible to compression and rupture.

<span class="mw-page-title-main">Fetal membranes</span> Amnion and chorion which surround and protect a developing fetus

The fetal membranes are the four extraembryonic membranes, associated with the developing embryo, and fetus in humans and other mammals. They are the amnion, chorion, allantois, and yolk sac. The amnion and the chorion are the chorioamniotic membranes that make up the amniotic sac which surrounds and protects the embryo. The fetal membranes are four of six accessory organs developed by the conceptus that are not part of the embryo itself, the other two are the placenta, and the umbilical cord.

<span class="mw-page-title-main">Circumvallate placenta</span> Medical condition

Circumvallate placenta is a rare condition affecting about 1-2% of pregnancies, in which the amnion and chorion fetal membranes essentially "double back" on the fetal side around the edges of the placenta. After delivery, a circumvallate placenta has a thick ring of membranes on its fetal surface. Circumvallate placenta is a placental morphological abnormality associated with increased fetal morbidity and mortality due to the restricted availability of nutrients and oxygen to the developing fetus.

<span class="mw-page-title-main">Fern test</span> Medical test

The fern test is a medical laboratory test used in obstetrics and gynecology. The name refers to the detection of a characteristic "fern like" pattern of vaginal secretions when a specimen is allowed to dry on a glass slide and is viewed under a low-power microscope. The fern test is most commonly used to provide evidence of the presence of amniotic fluid and is used in obstetrics to detect preterm premature rupture of membranes and/or the onset of labor. It also may provide indirect evidence of ovulation and fertility, although it does not predict the time of ovulation.

<span class="mw-page-title-main">Yoon Bo-hyun</span> South Korean gynecologist (born 1955)

Yoon Bo-hyun (Korean: 윤보현) is a South Korean physician and scientist in the medical area of obstetrics and gynecology. He researches in the area of preterm births, intra-amniotic infection or inflammation and fetal damage. For his theoretical and clinical academic achievements he received the Top Scientist and Technologist Award of Korea in 2012.

References

  1. Tatarinov, Yu S.; Petrunina, Yu A.; Gryaznova, I. M.; Petrunin, D. D. (July 1976). "Immunochemical identification of organ-specific human placentalαin2-globulin and its content in the amniotic fluid". Bulletin of Experimental Biology and Medicine. 82 (1): 994–996. doi:10.1007/BF00789850. S2CID   30709339.
  2. Alexander, J. M.; Cox, S. M. (1996). "Clinical course of premature rupture of the membranes". Seminars in Perinatology. 20 (5): 369–74. doi:10.1016/S0146-0005(96)80003-6. PMID   8912990.
  3. Ng, B. K.; Lim, P. S.; Shafiee, M. N.; Ghani, N. A.; Ismail, N. A.; Omar, M. H.; Yassin, M. A. (2013). "Comparison between AmniSure placental alpha microglobulin-1 rapid immunoassay and standard diagnostic methods for detection of rupture of membranes". BioMed Research International. 2013: 1–7. doi: 10.1155/2013/587438 . PMC   3773890 . PMID   24073412.
  4. Philipson, E. H.; Hoffman, D. S.; Hansen, G. O.; Ingardia, C. J. (1994). "Preterm premature rupture of membranes: Experience with latent periods in excess of seven days". American Journal of Perinatology. 11 (6): 416–9. doi:10.1055/s-2007-994609. PMID   7857433. S2CID   36602732.
  5. Mercer, B. M.; Goldenberg, R. L.; Meis, P. J.; Moawad, A. H.; Shellhaas, C.; Das, A.; Menard, M. K.; Caritis, S. N.; Thurnau, G. R.; Dombrowski, M. P.; Miodovnik, M.; Roberts, J. M.; McNellis, D. (2000). "The Preterm Prediction Study: Prediction of preterm premature rupture of membranes through clinical findings and ancillary testing. The National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network". American Journal of Obstetrics and Gynecology. 183 (3): 738–45. doi:10.1067/mob.2000.106766. PMID   10992202.
  6. French, J. I.; McGregor, J. A. (1996). "The pathobiology of premature rupture of membranes". Seminars in Perinatology. 20 (5): 344–68. doi:10.1016/S0146-0005(96)80002-4. PMID   8912989.
  7. Lee, S. E.; Park, J. S.; Norwitz, E. R.; Kim, K. W.; Park, H. S.; Jun, J. K. (2007). "Measurement of placental alpha-microglobulin-1 in cervicovaginal discharge to diagnose rupture of membranes". Obstetrics and Gynecology. 109 (3): 634–40. doi:10.1097/01.AOG.0000252706.46734.0a. PMID   17329514. S2CID   20732037.
  8. Mittal, Pooja; Romero, Roberto; Soto, Eleazar; Cordoba, Marcos; Nhan-Chang, Chia-Ling; Vaisbuch, Edi; Bieda, Janine; Chaiworapongsa, Tinnakorn; Kusanovic, Juan Pedro; Yeo, Lami; Yoon, Bo Hyun; Hassan, Sonia S. (2009). "528: A role for placental alpha-microglobulin-1 in the identification of women with a sonographic short cervix at risk for spontaneous rupture of membranes". American Journal of Obstetrics and Gynecology. 201 (6): S196–S197. doi:10.1016/j.ajog.2009.10.694.
  9. Lee, S. M.; Lee, J.; Seong, H. S.; Lee, S. E.; Park, J. S.; Romero, R.; Yoon, B. H. (2009). "The clinical significance of a positive Amnisure test in women with term labor with intact membranes". The Journal of Maternal-Fetal & Neonatal Medicine. 22 (4): 305–10. doi:10.1080/14767050902801694. PMC   2744034 . PMID   19350444.
  10. Lee, Seung Mi; Yoon, Bo Hyun; Park, Chan-Wook; Kim, Sun Min; Park, Jeong Woo (2011). "524: Intra-amniotic inflammation in patients with a positive Amnisure test in preterm labor and intact membranes". American Journal of Obstetrics and Gynecology. 204: S209. doi:10.1016/j.ajog.2010.10.543.
  11. Lee, S. M.; Romero, R.; Park, J. W.; Kim, S. M.; Park, C. W.; Korzeniewski, S. J.; Chaiworapongsa, T.; Yoon, B. H. (2012). "The clinical significance of a positive Amnisure test in women with preterm labor and intact membranes". The Journal of Maternal-Fetal & Neonatal Medicine. 25 (9): 1690–8. doi:10.3109/14767058.2012.657279. PMC   3422421 . PMID   22280400.
  12. Sukchaya, K.; Phupong, V. (2013). "A comparative study of positive rate of placental α-microglobulin-1 test in pre-term pregnant women with and without uterine contraction". Journal of Obstetrics and Gynaecology. 33 (6): 566–8. doi:10.3109/01443615.2013.807786. PMID   23919851. S2CID   20265539.
  13. Nikolova, T.; Bayev, O.; Nikolova, N.; Di Renzo, G. C. (2014). "Evaluation of a novel placental alpha microglobulin-1 (PAMG-1) test to predict spontaneous preterm delivery". Journal of Perinatal Medicine. 42 (4): 473–7. doi:10.1515/jpm-2013-0234. PMID   24334429. S2CID   6547430.
  14. 1 2 Nikolova, T.; Bayev, O.; Nikolova, N.; Di Renzo, G. C. (2015). "Comparison of a novel test for placental alpha microglobulin-1 with fetal fibronectin and cervical length measurement for the prediction of imminent spontaneous preterm delivery in patients with threatened preterm labor". Journal of Perinatal Medicine. 43 (4): 395–402. doi:10.1515/jpm-2014-0300. PMID   25562603. S2CID   207464192.
  15. SEGO. Amenaza de parto pretérmino. Protocolos Asistenciales en Obstetricia. ProSEGO. p5. Actualizado mayo 2014.
  16. Cousins, L. M.; Smok, D. P.; Lovett, S. M.; Poeltler, D. M. (2005). "AmniSure placental alpha microglobulin-1 rapid immunoassay versus standard diagnostic methods for detection of rupture of membranes". American Journal of Perinatology. 22 (6): 317–20. doi:10.1055/s-2005-870896. PMID   16118720. S2CID   260000731.
  17. Sosa, C. G.; Herrera, E.; Restrepo, J. C.; Strauss, A.; Alonso, J. (2014). "Comparison of placental alpha microglobulin-1 in vaginal fluid with intra-amniotic injection of indigo carmine for the diagnosis of rupture of membranes". Journal of Perinatal Medicine. 42 (5): 611–6. doi:10.1515/jpm-2013-0245. PMID   24698819. S2CID   22787288.