Plane wave expansion method

Last updated

Plane wave expansion method (PWE) refers to a computational technique in electromagnetics to solve the Maxwell's equations by formulating an eigenvalue problem out of the equation. This method is popular among the photonic crystal community as a method of solving for the band structure (dispersion relation) of specific photonic crystal geometries. PWE is traceable to the analytical formulations, and is useful in calculating modal solutions of Maxwell's equations over an inhomogeneous or periodic geometry. [1] It is specifically tuned to solve problems in a time-harmonic forms, with non-dispersive media (a reformulation of the method named Inverse dispersion allows frequency-dependent refractive indices [2] ).

Contents

Principles

[ dubious discuss ]

Plane waves are solutions to the homogeneous Helmholtz equation, and form a basis to represent fields in the periodic media. PWE as applied to photonic crystals as described is primarily sourced from Dr. Danner's tutorial. [3]

The electric or magnetic fields are expanded for each field component in terms of the Fourier series components along the reciprocal lattice vector. Similarly, the dielectric permittivity (which is periodic along reciprocal lattice vector for photonic crystals) is also expanded through Fourier series components.

with the Fourier series coefficients being the K numbers subscripted by m, n respectively, and the reciprocal lattice vector given by . In real modeling, the range of components considered will be reduced to just instead of the ideal, infinite wave.

Using these expansions in any of the curl-curl relations like, and simplifying under assumptions of a source free, linear, and non-dispersive region we obtain the eigenvalue relations which can be solved.

Example for 1D case

Band structure of a 1D Photonic Crystal, DBR air-core calculated using plane wave expansion technique with 101 planewaves, for d/a=0.8, and dielectric contrast of 12.250. Photonic Crystal 1D DBR aircore epsr12point25 DbyA0point8.png
Band structure of a 1D Photonic Crystal, DBR air-core calculated using plane wave expansion technique with 101 planewaves, for d/a=0.8, and dielectric contrast of 12.250.

For a y-polarized z-propagating electric wave, incident on a 1D-DBR periodic in only z-direction and homogeneous along x,y, with a lattice period of a. We then have the following simplified relations:

The constitutive eigenvalue equation we finally have to solve becomes,

This can be solved by building a matrix for the terms in the left hand side, and finding its eigenvalue and vectors. The eigenvalues correspond to the modal solutions, while the corresponding magnetic or electric fields themselves can be plotted using the Fourier expansions. The coefficients of the field harmonics are obtained from the specific eigenvectors.

The resulting band-structure obtained through the eigenmodes of this structure are shown to the right.

Example code

We can use the following code in MATLAB or GNU Octave to compute the same band structure,

%% solve the DBR photonic band structure for a simple% 1D DBR. air-spacing d, periodicity a, i.e, a > d,% we assume an infinite stack of 1D alternating eps_r|air layers% y-polarized, z-directed plane wave incident on the stack% periodic in the z-direction;%% parametersd=8;% air gapa=10;% total periodicityd_over_a=d/a;eps_r=12.2500;% dielectric constant, like GaAs,% max F.S coefs for representing E field, and Eps(r), areMmax=50;% Q matrix is non-symmetric in this case, Qij != Qji% Qmn = (2*pi*n + Kz)^2*Km-n% Kn = delta_n / eps_r + (1 - 1/eps_r) (d/a) sinc(pi.n.d/a)% here n runs from -Mmax to + Mmax,freqs=[];forKz=-pi/a:pi/(10*a):+pi/aQ=zeros(2*Mmax+1);forx=1:2*Mmax+1fory=1:2*Mmax+1X=x-Mmax;Y=y-Mmax;kn=(1-1/eps_r)*d_over_a.*sinc((X-Y).*d_over_a)+((X-Y)==0)*1/eps_r;Q(x,y)=(2*pi*(Y-1)/a+Kz).^2*kn;% -Mmax<=(Y-1)<=Mmaxendendfprintf('Kz = %g\n',Kz)omega_c=eig(Q);omega_c=sort(sqrt(omega_c));% important stepfreqs=[freqs;omega_c.'];endclosefigureholdonidx=1;foridx=1:length(-pi/a:pi/(10*a):+pi/a)plot(-pi/a:pi/(10*a):+pi/a,freqs(:,idx),'.-')endholdoffxlabel('Kz')ylabel('omega/c')title(sprintf('PBG of 1D DBR with d/a=%g, Epsr=%g',d/a,eps_r))

Advantages

PWE expansions are rigorous solutions. PWE is extremely well suited to the modal solution problem. Large size problems can be solved using iterative techniques like Conjugate gradient method. For both generalized and normal eigenvalue problems, just a few band-index plots in the band-structure diagrams are required, usually lying on the brillouin zone edges. This corresponds to eigenmodes solutions using iterative techniques, as opposed to diagonalization of the entire matrix.

The PWEM is highly efficient for calculating modes in periodic dielectric structures. Being a Fourier space method, it suffers from the Gibbs phenomenon and slow convergence in some configuration when fast Fourier factorization is not used. It is the method of choice for calculating the band structure of photonic crystals. It is not easy to understand at first, but it is easy to implement.

Disadvantages

[ dubious discuss ]

Sometimes spurious modes appear. Large problems scaled as O(n3), with the number of the plane waves (n) used in the problem. This is both time consuming and complex in memory requirements.

Alternatives include Order-N spectral method, and methods using Finite-difference time-domain (FDTD) which are simpler, and model transients.

If implemented correctly, spurious solutions are avoided. It is less efficient when index contrast is high or when metals are incorporated. It cannot be used for scattering analysis.

Being a Fourier-space method, Gibbs phenomenon affects the method's accuracy. This is particularly problematic for devices with high dielectric contrast.

See also

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation: where 2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle.

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values.

Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits. It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.

The Franz–Keldysh effect is a change in optical absorption by a semiconductor when an electric field is applied. The effect is named after the German physicist Walter Franz and Russian physicist Leonid Keldysh.

Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.

In the mathematical discipline of graph theory, the expander walk sampling theorem intuitively states that sampling vertices in an expander graph by doing relatively short random walk can simulate sampling the vertices independently from a uniform distribution. The earliest version of this theorem is due to Ajtai, Komlós & Szemerédi (1987), and the more general version is typically attributed to Gillman (1998).

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

In condensed matter physics, Lindhard theory is a method of calculating the effects of electric field screening by electrons in a solid. It is based on quantum mechanics and the random phase approximation. It is named after Danish physicist Jens Lindhard, who first developed the theory in 1954.

The quantization of the electromagnetic field is a procedure in physics turning Maxwell's classical electromagnetic waves into particles called photons. Photons are massless particles of definite energy, definite momentum, and definite spin.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

<span class="mw-page-title-main">Frequency selective surface</span> Optical filter

A frequency-selective surface (FSS) is any thin, repetitive surface designed to reflect, transmit or absorb electromagnetic fields based on the frequency of the field. In this sense, an FSS is a type of optical filter or metal-mesh optical filters in which the filtering is accomplished by virtue of the regular, periodic pattern on the surface of the FSS. Though not explicitly mentioned in the name, FSS's also have properties which vary with incidence angle and polarization as well - these are unavoidable consequences of the way in which FSS's are constructed. Frequency-selective surfaces have been most commonly used in the radio signals of the electromagnetic spectrum and find use in applications as diverse as the aforementioned microwave oven, antenna radomes and modern metamaterials. Sometimes frequency selective surfaces are referred to simply as periodic surfaces and are a 2-dimensional analog of the new periodic volumes known as photonic crystals.

In optics, the Ewald–Oseen extinction theorem, sometimes referred to as just the extinction theorem, is a theorem that underlies the common understanding of scattering. It is named after Paul Peter Ewald and Carl Wilhelm Oseen, who proved the theorem in crystalline and isotropic media, respectively, in 1916 and 1915. Originally, the theorem applied to scattering by an isotropic dielectric objects in free space. The scope of the theorem was greatly extended to encompass a wide variety of bianisotropic media.

<span class="mw-page-title-main">Phonon polariton</span> Quasiparticle form phonon and photon coupling

In condensed matter physics, a phonon polariton is a type of quasiparticle that can form in a diatomic ionic crystal due to coupling of transverse optical phonons and photons. They are particular type of polariton, which behave like bosons. Phonon polaritons occur in the region where the wavelength and energy of phonons and photons are similar, as to adhere to the avoided crossing principle.

References

  1. Andrianov, Igor V.; Danishevskyy, Vladyslav V.; Topol, Heiko; Rogerson, Graham A. (25 November 2016). "Propagation of Floquet–Bloch shear waves in viscoelastic composites: analysis and comparison of interface/interphase models for imperfect bonding". Acta Mechanica. 228: 1177-1196. doi:10.1007/s00707-016-1765-4.
  2. Rybin, Mikhail; Limonov, Mikhail (2016). "Inverse dispersion method for calculation of complex photonic band diagram and PT symmetry". Physical Review B. 93 (16): 165132. arXiv: 1707.02870 . doi:10.1103/PhysRevB.93.165132.
  3. Danner, Aaron J. (2011-01-31). "An introduction to the plane wave expansion method for calculating photonic crystal band diagrams". Aaron Danner - NUS. Archived from the original on 2022-06-15. Retrieved 2022-09-29.